|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > animorr | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| animorr | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | olcd 874 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: nelpr2 4652 hashf1 14497 gsummoncoe1 22313 mp2pm2mplem4 22816 relogbf 26835 tgcolg 28563 colmid 28697 3vfriswmgrlem 30297 satfvsucsuc 35371 bj-dfbi6 36577 itschlc0xyqsol1 48692 | 
| Copyright terms: Public domain | W3C validator |