| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorr | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorr | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | olcd 874 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr2 4634 hashf1 14480 gsummoncoe1 22251 mp2pm2mplem4 22752 relogbf 26758 tgcolg 28538 colmid 28672 3vfriswmgrlem 30263 satfvsucsuc 35392 bj-dfbi6 36598 itschlc0xyqsol1 48713 |
| Copyright terms: Public domain | W3C validator |