MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorr Structured version   Visualization version   GIF version

Theorem animorr 1002
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem animorr
StepHypRef Expression
1 simpr 478 . 2 ((𝜑𝜓) → 𝜓)
21olcd 901 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875
This theorem is referenced by:  gsummoncoe1  19996  3vfriswmgrlem  27626  bj-dfbi6  33064  nelpr2  40020
  Copyright terms: Public domain W3C validator