Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > animorr | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorr | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | olcd 871 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: nelpr2 4588 hashf1 14171 gsummoncoe1 21475 mp2pm2mplem4 21958 relogbf 25941 tgcolg 26915 colmid 27049 3vfriswmgrlem 28641 satfvsucsuc 33327 bj-dfbi6 34756 itschlc0xyqsol1 46112 |
Copyright terms: Public domain | W3C validator |