MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorr Structured version   Visualization version   GIF version

Theorem animorr 975
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem animorr
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21olcd 870 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  nelpr2  4585  hashf1  14099  gsummoncoe1  21385  mp2pm2mplem4  21866  relogbf  25846  tgcolg  26819  colmid  26953  3vfriswmgrlem  28542  satfvsucsuc  33227  bj-dfbi6  34683  itschlc0xyqsol1  46000
  Copyright terms: Public domain W3C validator