MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorr Structured version   Visualization version   GIF version

Theorem animorr 976
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem animorr
StepHypRef Expression
1 simpr 483 . 2 ((𝜑𝜓) → 𝜓)
21olcd 872 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846
This theorem is referenced by:  nelpr2  4660  hashf1  14458  gsummoncoe1  22234  mp2pm2mplem4  22731  relogbf  26743  tgcolg  28378  colmid  28512  3vfriswmgrlem  30107  satfvsucsuc  35008  bj-dfbi6  36084  itschlc0xyqsol1  47917
  Copyright terms: Public domain W3C validator