Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfbi5 | Structured version Visualization version GIF version |
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
bj-dfbi5 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 867 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓)) ↔ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∧ 𝜓))) | |
2 | bj-dfbi4 34754 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | |
3 | imor 850 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓)) ↔ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∧ 𝜓))) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: bj-dfbi6 34756 |
Copyright terms: Public domain | W3C validator |