Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfbi5 Structured version   Visualization version   GIF version

Theorem bj-dfbi5 34682
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
bj-dfbi5 ((𝜑𝜓) ↔ ((𝜑𝜓) → (𝜑𝜓)))

Proof of Theorem bj-dfbi5
StepHypRef Expression
1 orcom 866 . 2 (((𝜑𝜓) ∨ ¬ (𝜑𝜓)) ↔ (¬ (𝜑𝜓) ∨ (𝜑𝜓)))
2 bj-dfbi4 34681 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
3 imor 849 . 2 (((𝜑𝜓) → (𝜑𝜓)) ↔ (¬ (𝜑𝜓) ∨ (𝜑𝜓)))
41, 2, 33bitr4i 302 1 ((𝜑𝜓) ↔ ((𝜑𝜓) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  bj-dfbi6  34683
  Copyright terms: Public domain W3C validator