Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfnnf2 Structured version   Visualization version   GIF version

Theorem bj-dfnnf2 34919
Description: Alternate definition of df-bj-nnf 34906 using only primitive symbols (, ¬, ) in each conjunct. (Contributed by BJ, 20-Aug-2023.)
Assertion
Ref Expression
bj-dfnnf2 (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))

Proof of Theorem bj-dfnnf2
StepHypRef Expression
1 df-bj-nnf 34906 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
2 eximal 1785 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32anbi2ci 625 . 2 (((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
41, 3bitri 274 1 (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator