Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfeai Structured version   Visualization version   GIF version

Theorem bj-nnfeai 34845
Description: Nonfreeness implies the equivalent of ax5ea 1917, inference form. (Contributed by BJ, 22-Sep-2024.)
Hypothesis
Ref Expression
bj-nnfeai.1 Ⅎ'𝑥𝜑
Assertion
Ref Expression
bj-nnfeai (∃𝑥𝜑 → ∀𝑥𝜑)

Proof of Theorem bj-nnfeai
StepHypRef Expression
1 bj-nnfeai.1 . 2 Ⅎ'𝑥𝜑
2 bj-nnfea 34843 . 2 (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2ax-mp 5 1 (∃𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-bj-nnf 34833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator