Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version |
Description: Variant of anbi2i 622 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ifpnOLD 1071 clabel 2884 difin0ss 4299 disjxun 5068 elidinxp 5940 cnvresima 6122 ordpwsuc 7637 supmo 9141 infmo 9184 kmlem3 9839 cfval2 9947 eqger 18721 gaorber 18829 opprunit 19818 xmeter 23494 iscvsp 24197 usgr2pth0 28034 elold 33980 bj-dfnnf2 34846 funALTVfun 36736 clsk1indlem4 41543 alimp-no-surprise 46371 |
Copyright terms: Public domain | W3C validator |