| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: clabel 2882 difin0ss 4353 disjxun 5122 elidinxp 6036 cnvresima 6224 ordpwsuc 7814 supmo 9469 infmo 9514 kmlem3 10172 cfval2 10279 eqger 19166 gaorber 19296 opprunit 20342 issubrng 20512 xmeter 24377 iscvsp 25084 elold 27838 usgr2pth0 29752 bj-dfnnf2 36760 funALTVfun 38721 clsk1indlem4 44035 alimp-no-surprise 49612 |
| Copyright terms: Public domain | W3C validator |