![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version |
Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: clabel 2886 difin0ss 4379 disjxun 5146 elidinxp 6064 cnvresima 6252 ordpwsuc 7835 supmo 9490 infmo 9533 kmlem3 10191 cfval2 10298 eqger 19209 gaorber 19339 opprunit 20394 issubrng 20564 xmeter 24459 iscvsp 25175 elold 27923 usgr2pth0 29798 bj-dfnnf2 36720 funALTVfun 38680 clsk1indlem4 44034 alimp-no-surprise 49012 |
Copyright terms: Public domain | W3C validator |