| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: clabel 2874 difin0ss 4336 disjxun 5105 elidinxp 6015 cnvresima 6203 ordpwsuc 7790 supmo 9403 infmo 9448 kmlem3 10106 cfval2 10213 eqger 19110 gaorber 19240 opprunit 20286 issubrng 20456 xmeter 24321 iscvsp 25028 elold 27781 usgr2pth0 29695 bj-dfnnf2 36725 funALTVfun 38690 clsk1indlem4 44033 alimp-no-surprise 49767 |
| Copyright terms: Public domain | W3C validator |