| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: clabel 2878 difin0ss 4322 disjxun 5091 elidinxp 5997 cnvresima 6182 ordpwsuc 7751 supmo 9343 infmo 9388 kmlem3 10051 cfval2 10158 eqger 19092 gaorber 19222 opprunit 20297 issubrng 20464 xmeter 24349 iscvsp 25056 elold 27815 usgr2pth0 29745 axregs 35166 bj-dfnnf2 36802 funALTVfun 38817 clsk1indlem4 44162 alimp-no-surprise 49907 |
| Copyright terms: Public domain | W3C validator |