MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 626
Description: Variant of anbi2i 624 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 625 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 464 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ifpnOLD  1074  clabel  2882  difin0ss  4369  disjxun  5147  elidinxp  6044  cnvresima  6230  ordpwsuc  7803  supmo  9447  infmo  9490  kmlem3  10147  cfval2  10255  eqger  19058  gaorber  19172  opprunit  20191  xmeter  23939  iscvsp  24644  elold  27364  usgr2pth0  29022  bj-dfnnf2  35615  funALTVfun  37568  clsk1indlem4  42795  issubrng  46726  alimp-no-surprise  47828
  Copyright terms: Public domain W3C validator