| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: clabel 2877 difin0ss 4323 disjxun 5089 elidinxp 5993 cnvresima 6177 ordpwsuc 7745 supmo 9336 infmo 9381 kmlem3 10041 cfval2 10148 eqger 19088 gaorber 19218 opprunit 20293 issubrng 20460 xmeter 24346 iscvsp 25053 elold 27812 usgr2pth0 29741 axregs 35133 bj-dfnnf2 36770 funALTVfun 38735 clsk1indlem4 44076 alimp-no-surprise 49812 |
| Copyright terms: Public domain | W3C validator |