MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 625
Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 624 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 463 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ifpnOLD  1072  clabel  2885  difin0ss  4302  disjxun  5072  elidinxp  5951  cnvresima  6133  ordpwsuc  7662  supmo  9211  infmo  9254  kmlem3  9908  cfval2  10016  eqger  18806  gaorber  18914  opprunit  19903  xmeter  23586  iscvsp  24291  usgr2pth0  28133  elold  34053  bj-dfnnf2  34919  funALTVfun  36809  clsk1indlem4  41654  alimp-no-surprise  46485
  Copyright terms: Public domain W3C validator