MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 625
Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 624 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 462 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  clabel  2882  difin0ss  4353  disjxun  5122  elidinxp  6036  cnvresima  6224  ordpwsuc  7814  supmo  9469  infmo  9514  kmlem3  10172  cfval2  10279  eqger  19166  gaorber  19296  opprunit  20342  issubrng  20512  xmeter  24377  iscvsp  25084  elold  27838  usgr2pth0  29752  bj-dfnnf2  36760  funALTVfun  38721  clsk1indlem4  44035  alimp-no-surprise  49612
  Copyright terms: Public domain W3C validator