MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 628
Description: Variant of anbi2i 626 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 627 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 466 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  ifpnOLD  1075  clabel  2882  difin0ss  4283  disjxun  5051  elidinxp  5911  cnvresima  6093  ordpwsuc  7594  supmo  9068  infmo  9111  kmlem3  9766  cfval2  9874  eqger  18594  gaorber  18702  opprunit  19679  xmeter  23331  iscvsp  24025  usgr2pth0  27852  elold  33790  bj-dfnnf2  34656  funALTVfun  36546  clsk1indlem4  41331  alimp-no-surprise  46156
  Copyright terms: Public domain W3C validator