MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 624
Description: Variant of anbi2i 622 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 623 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 462 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  ifpnOLD  1072  clabel  2880  difin0ss  4368  disjxun  5146  elidinxp  6043  cnvresima  6229  ordpwsuc  7807  supmo  9453  infmo  9496  kmlem3  10153  cfval2  10261  eqger  19101  gaorber  19220  opprunit  20275  issubrng  20443  xmeter  24259  iscvsp  24975  elold  27710  usgr2pth0  29456  bj-dfnnf2  36081  funALTVfun  38034  clsk1indlem4  43260  alimp-no-surprise  47992
  Copyright terms: Public domain W3C validator