![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version |
Description: Variant of anbi2i 624 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 625 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | 2 | biancomi 464 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ifpnOLD 1074 clabel 2882 difin0ss 4369 disjxun 5147 elidinxp 6044 cnvresima 6230 ordpwsuc 7803 supmo 9447 infmo 9490 kmlem3 10147 cfval2 10255 eqger 19058 gaorber 19172 opprunit 20191 xmeter 23939 iscvsp 24644 elold 27364 usgr2pth0 29022 bj-dfnnf2 35615 funALTVfun 37568 clsk1indlem4 42795 issubrng 46726 alimp-no-surprise 47828 |
Copyright terms: Public domain | W3C validator |