| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: clabel 2874 difin0ss 4326 disjxun 5093 elidinxp 5999 cnvresima 6183 ordpwsuc 7754 supmo 9361 infmo 9406 kmlem3 10066 cfval2 10173 eqger 19075 gaorber 19205 opprunit 20280 issubrng 20450 xmeter 24337 iscvsp 25044 elold 27801 usgr2pth0 29728 axregs 35073 bj-dfnnf2 36710 funALTVfun 38675 clsk1indlem4 44017 alimp-no-surprise 49767 |
| Copyright terms: Public domain | W3C validator |