MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 625
Description: Variant of anbi2i 623 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 624 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 462 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  clabel  2877  difin0ss  4323  disjxun  5089  elidinxp  5993  cnvresima  6177  ordpwsuc  7745  supmo  9336  infmo  9381  kmlem3  10041  cfval2  10148  eqger  19088  gaorber  19218  opprunit  20293  issubrng  20460  xmeter  24346  iscvsp  25053  elold  27812  usgr2pth0  29741  axregs  35133  bj-dfnnf2  36770  funALTVfun  38735  clsk1indlem4  44076  alimp-no-surprise  49812
  Copyright terms: Public domain W3C validator