![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version |
Description: Variant of anbi2i 617 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 618 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | ancom 453 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
4 | 2, 3 | bitri 267 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: ifpn 1096 clabel 2924 difin0ss 4145 disjxun 4839 elidinxp 5665 cnvresima 5840 ordpwsuc 7247 supmo 8598 infmo 8641 kmlem3 9260 cfval2 9368 eqger 17953 gaorber 18049 opprunit 18973 xmeter 22562 iscvsp 23251 usgr2pth0 27010 bj-clabel 33270 clsk1indlem4 39111 alimp-no-surprise 43316 |
Copyright terms: Public domain | W3C validator |