MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi2ci Structured version   Visualization version   GIF version

Theorem anbi2ci 624
Description: Variant of anbi2i 622 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
anbi.1 (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 anbi.1 . . 3 (𝜑𝜓)
21anbi1i 623 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
32biancomi 462 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  clabel  2891  difin0ss  4396  disjxun  5164  elidinxp  6073  cnvresima  6261  ordpwsuc  7851  supmo  9521  infmo  9564  kmlem3  10222  cfval2  10329  eqger  19218  gaorber  19348  opprunit  20403  issubrng  20573  xmeter  24464  iscvsp  25180  elold  27926  usgr2pth0  29801  bj-dfnnf2  36703  funALTVfun  38654  clsk1indlem4  44006  alimp-no-surprise  48875
  Copyright terms: Public domain W3C validator