![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi2ci | Structured version Visualization version GIF version |
Description: Variant of anbi2i 622 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
anbi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: clabel 2891 difin0ss 4396 disjxun 5164 elidinxp 6073 cnvresima 6261 ordpwsuc 7851 supmo 9521 infmo 9564 kmlem3 10222 cfval2 10329 eqger 19218 gaorber 19348 opprunit 20403 issubrng 20573 xmeter 24464 iscvsp 25180 elold 27926 usgr2pth0 29801 bj-dfnnf2 36703 funALTVfun 38654 clsk1indlem4 44006 alimp-no-surprise 48875 |
Copyright terms: Public domain | W3C validator |