| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eximALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of exim 1834 directly from alim 1810 by using df-ex 1780 (using duality of ∀ and ∃. (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-eximALT | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . . . 4 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥(¬ 𝜓 → ¬ 𝜑)) |
| 3 | alim 1810 | . . 3 ⊢ (∀𝑥(¬ 𝜓 → ¬ 𝜑) → (∀𝑥 ¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | |
| 4 | con3 153 | . . 3 ⊢ ((∀𝑥 ¬ 𝜓 → ∀𝑥 ¬ 𝜑) → (¬ ∀𝑥 ¬ 𝜑 → ¬ ∀𝑥 ¬ 𝜓)) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (¬ ∀𝑥 ¬ 𝜑 → ¬ ∀𝑥 ¬ 𝜓)) |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 7 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-aleximiALT 36621 |
| Copyright terms: Public domain | W3C validator |