| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1832 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: eximi 1835 19.38b 1841 19.23v 1942 alequexv 2001 nf5-1 2146 spimt 2384 darii 2658 festino 2667 baroco 2669 darapti 2677 elex22 3472 spcimgfi1OLD 3514 vtoclegftOLD 3555 sbccomlem 3832 rspn0 4319 exel 5393 bj-axdd2 36580 bj-2exim 36599 bj-sylget 36609 bj-alexim 36615 bj-cbvalimt 36627 bj-cbveximt 36628 bj-eqs 36663 bj-nnf-exlim 36744 bj-nnflemee 36751 bj-nnflemae 36752 bj-axc10 36771 bj-alequex 36772 bj-spimtv 36782 bj-spcimdv 36883 bj-spcimdvv 36884 sn-exelALT 42206 2exim 44368 pm11.71 44386 onfrALTlem2 44536 19.41rg 44540 ax6e2nd 44548 elex2VD 44827 elex22VD 44828 onfrALTlem2VD 44878 19.41rgVD 44891 ax6e2eqVD 44896 ax6e2ndVD 44897 ax6e2ndeqVD 44898 ax6e2ndALT 44919 ax6e2ndeqALT 44920 |
| Copyright terms: Public domain | W3C validator |