MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1833
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1831 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-ex 1779
This theorem is referenced by:  eximi  1834  19.38b  1840  19.23v  1941  alequexv  1999  nf5-1  2144  spimt  2389  darii  2663  festino  2672  baroco  2674  darapti  2682  elex2OLD  3488  elex22  3489  spcimgfi1OLD  3531  vtoclegftOLD  3572  sbccomlem  3849  rspn0  4336  exel  5418  bj-axdd2  36568  bj-2exim  36587  bj-sylget  36597  bj-alexim  36603  bj-cbvalimt  36615  bj-cbveximt  36616  bj-eqs  36651  bj-nnf-exlim  36732  bj-nnflemee  36739  bj-nnflemae  36740  bj-axc10  36759  bj-alequex  36760  bj-spimtv  36770  bj-spcimdv  36871  bj-spcimdvv  36872  sn-exelALT  42232  2exim  44370  pm11.71  44388  onfrALTlem2  44538  19.41rg  44542  ax6e2nd  44550  elex2VD  44830  elex22VD  44831  onfrALTlem2VD  44881  19.41rgVD  44894  ax6e2eqVD  44899  ax6e2ndVD  44900  ax6e2ndeqVD  44901  ax6e2ndALT  44922  ax6e2ndeqALT  44923
  Copyright terms: Public domain W3C validator