Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | aleximi 1835 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: eximi 1838 19.38b 1844 19.23v 1946 alequexv 2005 nf5-1 2143 spimt 2386 darii 2666 festino 2675 baroco 2677 darapti 2685 elex2 3443 elex22 3444 vtoclegft 3512 spcimgft 3516 rspn0 4283 bj-axdd2 34701 bj-2exim 34720 bj-sylget 34729 bj-alexim 34735 bj-cbvalimt 34747 bj-cbveximt 34748 bj-eqs 34783 bj-nnf-exlim 34865 bj-nnflemee 34872 bj-nnflemae 34873 bj-axc10 34892 bj-alequex 34893 bj-spimtv 34903 bj-spcimdv 35007 bj-spcimdvv 35008 sn-el 40115 2exim 41886 pm11.71 41904 onfrALTlem2 42055 19.41rg 42059 ax6e2nd 42067 elex2VD 42347 elex22VD 42348 onfrALTlem2VD 42398 19.41rgVD 42411 ax6e2eqVD 42416 ax6e2ndVD 42417 ax6e2ndeqVD 42418 ax6e2ndALT 42439 ax6e2ndeqALT 42440 |
Copyright terms: Public domain | W3C validator |