| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1833 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: eximi 1836 19.38b 1842 19.23v 1943 alequexv 2002 nf5-1 2148 spimt 2386 darii 2660 festino 2669 baroco 2671 darapti 2679 elex22 3461 spcimgfi1OLD 3503 vtoclegftOLD 3544 sbccomlem 3820 rspn0 4306 exel 5376 bj-axdd2 36632 bj-2exim 36651 bj-sylget 36661 bj-alexim 36667 bj-cbvalimt 36679 bj-cbveximt 36680 bj-eqs 36715 bj-nnf-exlim 36796 bj-nnflemee 36803 bj-nnflemae 36804 bj-axc10 36823 bj-alequex 36824 bj-spimtv 36834 bj-spcimdv 36935 bj-spcimdvv 36936 sn-exelALT 42257 2exim 44418 pm11.71 44436 onfrALTlem2 44585 19.41rg 44589 ax6e2nd 44597 elex2VD 44876 elex22VD 44877 onfrALTlem2VD 44927 19.41rgVD 44940 ax6e2eqVD 44945 ax6e2ndVD 44946 ax6e2ndeqVD 44947 ax6e2ndALT 44968 ax6e2ndeqALT 44969 |
| Copyright terms: Public domain | W3C validator |