MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1834
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1832 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  eximi  1835  19.38b  1841  19.23v  1942  alequexv  2001  nf5-1  2146  spimt  2391  darii  2665  festino  2674  baroco  2676  darapti  2684  elex2OLD  3489  elex22  3490  spcimgfi1OLD  3532  vtoclegftOLD  3573  sbccomlem  3849  rspn0  4336  exel  5413  bj-axdd2  36615  bj-2exim  36634  bj-sylget  36644  bj-alexim  36650  bj-cbvalimt  36662  bj-cbveximt  36663  bj-eqs  36698  bj-nnf-exlim  36779  bj-nnflemee  36786  bj-nnflemae  36787  bj-axc10  36806  bj-alequex  36807  bj-spimtv  36817  bj-spcimdv  36918  bj-spcimdvv  36919  sn-exelALT  42236  2exim  44378  pm11.71  44396  onfrALTlem2  44546  19.41rg  44550  ax6e2nd  44558  elex2VD  44837  elex22VD  44838  onfrALTlem2VD  44888  19.41rgVD  44901  ax6e2eqVD  44906  ax6e2ndVD  44907  ax6e2ndeqVD  44908  ax6e2ndALT  44929  ax6e2ndeqALT  44930
  Copyright terms: Public domain W3C validator