MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1834
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1832 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  eximi  1835  19.38b  1841  19.23v  1942  alequexv  2001  nf5-1  2146  spimt  2384  darii  2658  festino  2667  baroco  2669  darapti  2677  elex22  3463  spcimgfi1OLD  3505  vtoclegftOLD  3546  sbccomlem  3823  rspn0  4309  exel  5380  bj-axdd2  36568  bj-2exim  36587  bj-sylget  36597  bj-alexim  36603  bj-cbvalimt  36615  bj-cbveximt  36616  bj-eqs  36651  bj-nnf-exlim  36732  bj-nnflemee  36739  bj-nnflemae  36740  bj-axc10  36759  bj-alequex  36760  bj-spimtv  36770  bj-spcimdv  36871  bj-spcimdvv  36872  sn-exelALT  42194  2exim  44355  pm11.71  44373  onfrALTlem2  44523  19.41rg  44527  ax6e2nd  44535  elex2VD  44814  elex22VD  44815  onfrALTlem2VD  44865  19.41rgVD  44878  ax6e2eqVD  44883  ax6e2ndVD  44884  ax6e2ndeqVD  44885  ax6e2ndALT  44906  ax6e2ndeqALT  44907
  Copyright terms: Public domain W3C validator