MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1835
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1833 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  eximi  1836  19.38b  1842  19.23v  1943  alequexv  2002  nf5-1  2150  spimt  2388  darii  2662  festino  2671  baroco  2673  darapti  2681  elex22  3462  spcimgfi1OLD  3502  sbccomlem  3816  rspn0  4305  exel  5378  bj-axdd2  36657  bj-2exim  36676  bj-sylget  36686  bj-alexim  36692  bj-cbvalimt  36704  bj-cbveximt  36705  bj-eqs  36740  bj-nnf-exlim  36821  bj-nnflemee  36828  bj-nnflemae  36829  bj-axc10  36848  bj-alequex  36849  bj-spimtv  36859  bj-spcimdv  36960  bj-spcimdvv  36961  sn-exelALT  42337  2exim  44497  pm11.71  44515  onfrALTlem2  44664  19.41rg  44668  ax6e2nd  44676  elex2VD  44955  elex22VD  44956  onfrALTlem2VD  45006  19.41rgVD  45019  ax6e2eqVD  45024  ax6e2ndVD  45025  ax6e2ndeqVD  45026  ax6e2ndALT  45047  ax6e2ndeqALT  45048
  Copyright terms: Public domain W3C validator