| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1833 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: eximi 1836 19.38b 1842 19.23v 1943 alequexv 2002 nf5-1 2150 spimt 2388 darii 2662 festino 2671 baroco 2673 darapti 2681 elex22 3462 spcimgfi1OLD 3502 sbccomlem 3816 rspn0 4305 exel 5378 bj-axdd2 36657 bj-2exim 36676 bj-sylget 36686 bj-alexim 36692 bj-cbvalimt 36704 bj-cbveximt 36705 bj-eqs 36740 bj-nnf-exlim 36821 bj-nnflemee 36828 bj-nnflemae 36829 bj-axc10 36848 bj-alequex 36849 bj-spimtv 36859 bj-spcimdv 36960 bj-spcimdvv 36961 sn-exelALT 42337 2exim 44497 pm11.71 44515 onfrALTlem2 44664 19.41rg 44668 ax6e2nd 44676 elex2VD 44955 elex22VD 44956 onfrALTlem2VD 45006 19.41rgVD 45019 ax6e2eqVD 45024 ax6e2ndVD 45025 ax6e2ndeqVD 45026 ax6e2ndALT 45047 ax6e2ndeqALT 45048 |
| Copyright terms: Public domain | W3C validator |