| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1832 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: eximi 1835 19.38b 1841 19.23v 1942 alequexv 2001 nf5-1 2146 spimt 2391 darii 2665 festino 2674 baroco 2676 darapti 2684 elex2OLD 3489 elex22 3490 spcimgfi1OLD 3532 vtoclegftOLD 3573 sbccomlem 3849 rspn0 4336 exel 5413 bj-axdd2 36615 bj-2exim 36634 bj-sylget 36644 bj-alexim 36650 bj-cbvalimt 36662 bj-cbveximt 36663 bj-eqs 36698 bj-nnf-exlim 36779 bj-nnflemee 36786 bj-nnflemae 36787 bj-axc10 36806 bj-alequex 36807 bj-spimtv 36817 bj-spcimdv 36918 bj-spcimdvv 36919 sn-exelALT 42236 2exim 44378 pm11.71 44396 onfrALTlem2 44546 19.41rg 44550 ax6e2nd 44558 elex2VD 44837 elex22VD 44838 onfrALTlem2VD 44888 19.41rgVD 44901 ax6e2eqVD 44906 ax6e2ndVD 44907 ax6e2ndeqVD 44908 ax6e2ndALT 44929 ax6e2ndeqALT 44930 |
| Copyright terms: Public domain | W3C validator |