![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | aleximi 1834 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: eximi 1837 19.38b 1843 19.23v 1945 alequexv 2004 nf5-1 2141 spimt 2385 darii 2660 festino 2669 baroco 2671 darapti 2679 elex2OLD 3495 elex22 3496 vtoclegftOLD 3574 spcimgft 3577 rspn0 4351 exel 5432 bj-axdd2 35458 bj-2exim 35477 bj-sylget 35486 bj-alexim 35492 bj-cbvalimt 35504 bj-cbveximt 35505 bj-eqs 35540 bj-nnf-exlim 35622 bj-nnflemee 35629 bj-nnflemae 35630 bj-axc10 35649 bj-alequex 35650 bj-spimtv 35660 bj-spcimdv 35763 bj-spcimdvv 35764 sn-exelALT 41031 2exim 43123 pm11.71 43141 onfrALTlem2 43292 19.41rg 43296 ax6e2nd 43304 elex2VD 43584 elex22VD 43585 onfrALTlem2VD 43635 19.41rgVD 43648 ax6e2eqVD 43653 ax6e2ndVD 43654 ax6e2ndeqVD 43655 ax6e2ndALT 43676 ax6e2ndeqALT 43677 |
Copyright terms: Public domain | W3C validator |