MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1837
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1835 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  eximi  1838  19.38b  1844  19.23v  1946  alequexv  2005  nf5-1  2143  spimt  2386  darii  2666  festino  2675  baroco  2677  darapti  2685  elex2  3443  elex22  3444  vtoclegft  3512  spcimgft  3516  rspn0  4283  bj-axdd2  34701  bj-2exim  34720  bj-sylget  34729  bj-alexim  34735  bj-cbvalimt  34747  bj-cbveximt  34748  bj-eqs  34783  bj-nnf-exlim  34865  bj-nnflemee  34872  bj-nnflemae  34873  bj-axc10  34892  bj-alequex  34893  bj-spimtv  34903  bj-spcimdv  35007  bj-spcimdvv  35008  sn-el  40115  2exim  41886  pm11.71  41904  onfrALTlem2  42055  19.41rg  42059  ax6e2nd  42067  elex2VD  42347  elex22VD  42348  onfrALTlem2VD  42398  19.41rgVD  42411  ax6e2eqVD  42416  ax6e2ndVD  42417  ax6e2ndeqVD  42418  ax6e2ndALT  42439  ax6e2ndeqALT  42440
  Copyright terms: Public domain W3C validator