MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1834
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1832 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  eximi  1835  19.38b  1841  19.23v  1942  alequexv  2001  nf5-1  2146  spimt  2384  darii  2658  festino  2667  baroco  2669  darapti  2677  elex22  3472  spcimgfi1OLD  3514  vtoclegftOLD  3555  sbccomlem  3832  rspn0  4319  exel  5393  bj-axdd2  36580  bj-2exim  36599  bj-sylget  36609  bj-alexim  36615  bj-cbvalimt  36627  bj-cbveximt  36628  bj-eqs  36663  bj-nnf-exlim  36744  bj-nnflemee  36751  bj-nnflemae  36752  bj-axc10  36771  bj-alequex  36772  bj-spimtv  36782  bj-spcimdv  36883  bj-spcimdvv  36884  sn-exelALT  42206  2exim  44368  pm11.71  44386  onfrALTlem2  44536  19.41rg  44540  ax6e2nd  44548  elex2VD  44827  elex22VD  44828  onfrALTlem2VD  44878  19.41rgVD  44891  ax6e2eqVD  44896  ax6e2ndVD  44897  ax6e2ndeqVD  44898  ax6e2ndALT  44919  ax6e2ndeqALT  44920
  Copyright terms: Public domain W3C validator