Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | aleximi 1834 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: eximi 1837 19.38b 1843 19.23v 1945 alequexv 2004 nf5-1 2141 spimt 2386 darii 2666 festino 2675 baroco 2677 darapti 2685 elex2OLD 3453 elex22 3454 vtoclegft 3522 spcimgft 3526 rspn0 4286 bj-axdd2 34774 bj-2exim 34793 bj-sylget 34802 bj-alexim 34808 bj-cbvalimt 34820 bj-cbveximt 34821 bj-eqs 34856 bj-nnf-exlim 34938 bj-nnflemee 34945 bj-nnflemae 34946 bj-axc10 34965 bj-alequex 34966 bj-spimtv 34976 bj-spcimdv 35080 bj-spcimdvv 35081 sn-el 40187 2exim 41997 pm11.71 42015 onfrALTlem2 42166 19.41rg 42170 ax6e2nd 42178 elex2VD 42458 elex22VD 42459 onfrALTlem2VD 42509 19.41rgVD 42522 ax6e2eqVD 42527 ax6e2ndVD 42528 ax6e2ndeqVD 42529 ax6e2ndALT 42550 ax6e2ndeqALT 42551 |
Copyright terms: Public domain | W3C validator |