Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | aleximi 1838 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-ex 1787 |
This theorem is referenced by: eximi 1841 19.38b 1847 19.23v 1949 alequexv 2008 nf5-1 2145 spimt 2388 darii 2668 festino 2677 baroco 2679 darapti 2687 elex2OLD 3452 elex22 3453 vtoclegft 3521 spcimgft 3525 rspn0 4292 bj-axdd2 34770 bj-2exim 34789 bj-sylget 34798 bj-alexim 34804 bj-cbvalimt 34816 bj-cbveximt 34817 bj-eqs 34852 bj-nnf-exlim 34934 bj-nnflemee 34941 bj-nnflemae 34942 bj-axc10 34961 bj-alequex 34962 bj-spimtv 34972 bj-spcimdv 35076 bj-spcimdvv 35077 sn-el 40184 2exim 41967 pm11.71 41985 onfrALTlem2 42136 19.41rg 42140 ax6e2nd 42148 elex2VD 42428 elex22VD 42429 onfrALTlem2VD 42479 19.41rgVD 42492 ax6e2eqVD 42497 ax6e2ndVD 42498 ax6e2ndeqVD 42499 ax6e2ndALT 42520 ax6e2ndeqALT 42521 |
Copyright terms: Public domain | W3C validator |