MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1836
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1834 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  eximi  1837  19.38b  1843  19.23v  1945  alequexv  2004  nf5-1  2141  spimt  2386  darii  2666  festino  2675  baroco  2677  darapti  2685  elex2OLD  3453  elex22  3454  vtoclegft  3522  spcimgft  3526  rspn0  4286  bj-axdd2  34774  bj-2exim  34793  bj-sylget  34802  bj-alexim  34808  bj-cbvalimt  34820  bj-cbveximt  34821  bj-eqs  34856  bj-nnf-exlim  34938  bj-nnflemee  34945  bj-nnflemae  34946  bj-axc10  34965  bj-alequex  34966  bj-spimtv  34976  bj-spcimdv  35080  bj-spcimdvv  35081  sn-el  40187  2exim  41997  pm11.71  42015  onfrALTlem2  42166  19.41rg  42170  ax6e2nd  42178  elex2VD  42458  elex22VD  42459  onfrALTlem2VD  42509  19.41rgVD  42522  ax6e2eqVD  42527  ax6e2ndVD  42528  ax6e2ndeqVD  42529  ax6e2ndALT  42550  ax6e2ndeqALT  42551
  Copyright terms: Public domain W3C validator