| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1832 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: eximi 1835 19.38b 1841 19.23v 1942 alequexv 2001 nf5-1 2146 spimt 2384 darii 2658 festino 2667 baroco 2669 darapti 2677 elex22 3463 spcimgfi1OLD 3505 vtoclegftOLD 3546 sbccomlem 3823 rspn0 4309 exel 5380 bj-axdd2 36568 bj-2exim 36587 bj-sylget 36597 bj-alexim 36603 bj-cbvalimt 36615 bj-cbveximt 36616 bj-eqs 36651 bj-nnf-exlim 36732 bj-nnflemee 36739 bj-nnflemae 36740 bj-axc10 36759 bj-alequex 36760 bj-spimtv 36770 bj-spcimdv 36871 bj-spcimdvv 36872 sn-exelALT 42194 2exim 44355 pm11.71 44373 onfrALTlem2 44523 19.41rg 44527 ax6e2nd 44535 elex2VD 44814 elex22VD 44815 onfrALTlem2VD 44865 19.41rgVD 44878 ax6e2eqVD 44883 ax6e2ndVD 44884 ax6e2ndeqVD 44885 ax6e2ndALT 44906 ax6e2ndeqALT 44907 |
| Copyright terms: Public domain | W3C validator |