MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1840
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1838 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 206  df-ex 1787
This theorem is referenced by:  eximi  1841  19.38b  1847  19.23v  1949  alequexv  2008  nf5-1  2145  spimt  2388  darii  2668  festino  2677  baroco  2679  darapti  2687  elex2OLD  3452  elex22  3453  vtoclegft  3521  spcimgft  3525  rspn0  4292  bj-axdd2  34770  bj-2exim  34789  bj-sylget  34798  bj-alexim  34804  bj-cbvalimt  34816  bj-cbveximt  34817  bj-eqs  34852  bj-nnf-exlim  34934  bj-nnflemee  34941  bj-nnflemae  34942  bj-axc10  34961  bj-alequex  34962  bj-spimtv  34972  bj-spcimdv  35076  bj-spcimdvv  35077  sn-el  40184  2exim  41967  pm11.71  41985  onfrALTlem2  42136  19.41rg  42140  ax6e2nd  42148  elex2VD  42428  elex22VD  42429  onfrALTlem2VD  42479  19.41rgVD  42492  ax6e2eqVD  42497  ax6e2ndVD  42498  ax6e2ndeqVD  42499  ax6e2ndALT  42520  ax6e2ndeqALT  42521
  Copyright terms: Public domain W3C validator