MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1832
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1830 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  eximi  1833  19.38b  1839  19.23v  1941  alequexv  2000  nf5-1  2145  spimt  2394  darii  2668  festino  2677  baroco  2679  darapti  2687  elex2OLD  3513  elex22  3514  spcimgfi1OLD  3560  vtoclegftOLD  3602  sbccomlem  3891  rspn0  4379  exel  5453  bj-axdd2  36558  bj-2exim  36577  bj-sylget  36587  bj-alexim  36593  bj-cbvalimt  36605  bj-cbveximt  36606  bj-eqs  36641  bj-nnf-exlim  36722  bj-nnflemee  36729  bj-nnflemae  36730  bj-axc10  36749  bj-alequex  36750  bj-spimtv  36760  bj-spcimdv  36861  bj-spcimdvv  36862  sn-exelALT  42211  2exim  44348  pm11.71  44366  onfrALTlem2  44517  19.41rg  44521  ax6e2nd  44529  elex2VD  44809  elex22VD  44810  onfrALTlem2VD  44860  19.41rgVD  44873  ax6e2eqVD  44878  ax6e2ndVD  44879  ax6e2ndeqVD  44880  ax6e2ndALT  44901  ax6e2ndeqALT  44902
  Copyright terms: Public domain W3C validator