MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exim Structured version   Visualization version   GIF version

Theorem exim 1835
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21aleximi 1833 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  eximi  1836  19.38b  1842  19.23v  1943  alequexv  2002  nf5-1  2148  spimt  2386  darii  2660  festino  2669  baroco  2671  darapti  2679  elex22  3461  spcimgfi1OLD  3503  vtoclegftOLD  3544  sbccomlem  3820  rspn0  4306  exel  5376  bj-axdd2  36632  bj-2exim  36651  bj-sylget  36661  bj-alexim  36667  bj-cbvalimt  36679  bj-cbveximt  36680  bj-eqs  36715  bj-nnf-exlim  36796  bj-nnflemee  36803  bj-nnflemae  36804  bj-axc10  36823  bj-alequex  36824  bj-spimtv  36834  bj-spcimdv  36935  bj-spcimdvv  36936  sn-exelALT  42257  2exim  44418  pm11.71  44436  onfrALTlem2  44585  19.41rg  44589  ax6e2nd  44597  elex2VD  44876  elex22VD  44877  onfrALTlem2VD  44927  19.41rgVD  44940  ax6e2eqVD  44945  ax6e2ndVD  44946  ax6e2ndeqVD  44947  ax6e2ndALT  44968  ax6e2ndeqALT  44969
  Copyright terms: Public domain W3C validator