![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | aleximi 1830 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: eximi 1833 19.38b 1839 19.23v 1941 alequexv 2000 nf5-1 2145 spimt 2394 darii 2668 festino 2677 baroco 2679 darapti 2687 elex2OLD 3513 elex22 3514 spcimgfi1OLD 3560 vtoclegftOLD 3602 sbccomlem 3891 rspn0 4379 exel 5453 bj-axdd2 36558 bj-2exim 36577 bj-sylget 36587 bj-alexim 36593 bj-cbvalimt 36605 bj-cbveximt 36606 bj-eqs 36641 bj-nnf-exlim 36722 bj-nnflemee 36729 bj-nnflemae 36730 bj-axc10 36749 bj-alequex 36750 bj-spimtv 36760 bj-spcimdv 36861 bj-spcimdvv 36862 sn-exelALT 42211 2exim 44348 pm11.71 44366 onfrALTlem2 44517 19.41rg 44521 ax6e2nd 44529 elex2VD 44809 elex22VD 44810 onfrALTlem2VD 44860 19.41rgVD 44873 ax6e2eqVD 44878 ax6e2ndVD 44879 ax6e2ndeqVD 44880 ax6e2ndALT 44901 ax6e2ndeqALT 44902 |
Copyright terms: Public domain | W3C validator |