| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | aleximi 1831 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: eximi 1834 19.38b 1840 19.23v 1941 alequexv 1999 nf5-1 2144 spimt 2389 darii 2663 festino 2672 baroco 2674 darapti 2682 elex2OLD 3488 elex22 3489 spcimgfi1OLD 3531 vtoclegftOLD 3572 sbccomlem 3849 rspn0 4336 exel 5418 bj-axdd2 36568 bj-2exim 36587 bj-sylget 36597 bj-alexim 36603 bj-cbvalimt 36615 bj-cbveximt 36616 bj-eqs 36651 bj-nnf-exlim 36732 bj-nnflemee 36739 bj-nnflemae 36740 bj-axc10 36759 bj-alequex 36760 bj-spimtv 36770 bj-spcimdv 36871 bj-spcimdvv 36872 sn-exelALT 42232 2exim 44370 pm11.71 44388 onfrALTlem2 44538 19.41rg 44542 ax6e2nd 44550 elex2VD 44830 elex22VD 44831 onfrALTlem2VD 44881 19.41rgVD 44894 ax6e2eqVD 44899 ax6e2ndVD 44900 ax6e2ndeqVD 44901 ax6e2ndALT 44922 ax6e2ndeqALT 44923 |
| Copyright terms: Public domain | W3C validator |