Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eximcom Structured version   Visualization version   GIF version

Theorem bj-eximcom 34803
Description: A commuted form of exim 1839 which is sometimes posited as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.)
Assertion
Ref Expression
bj-eximcom (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem bj-eximcom
StepHypRef Expression
1 pm2.27 42 . . 3 (𝜑 → ((𝜑𝜓) → 𝜓))
21aleximi 1837 . 2 (∀𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∃𝑥𝜓))
32com12 32 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-ex 1786
This theorem is referenced by:  bj-wnf2  34879  bj-snsetex  35132
  Copyright terms: Public domain W3C validator