Step | Hyp | Ref
| Expression |
1 | | elisset 2819 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) |
2 | | eleq2 2826 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ({𝑥} ∈ 𝑦 ↔ {𝑥} ∈ 𝐴)) |
3 | 2 | abbidv 2807 |
. . . . . 6
⊢ (𝑦 = 𝐴 → {𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴}) |
4 | | eleq1 2825 |
. . . . . . 7
⊢ ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V ↔ {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
5 | 4 | biimpd 232 |
. . . . . 6
⊢ ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
6 | 3, 5 | syl 17 |
. . . . 5
⊢ (𝑦 = 𝐴 → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
7 | 6 | eximi 1842 |
. . . 4
⊢
(∃𝑦 𝑦 = 𝐴 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
8 | 1, 7 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
9 | | bj-eximcom 34561 |
. . . . 5
⊢
(∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
10 | 9 | com12 32 |
. . . 4
⊢
(∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) |
11 | | ax-rep 5179 |
. . . . . . . 8
⊢
(∀𝑢∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) → ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}))) |
12 | | 19.3v 1990 |
. . . . . . . . . . 11
⊢
(∀𝑧 𝑢 = {𝑡} ↔ 𝑢 = {𝑡}) |
13 | 12 | sbbii 2082 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡}) |
14 | | sbsbc 3698 |
. . . . . . . . . . . . . 14
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡}) |
15 | | sbceq2g 4331 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡})) |
16 | 15 | elv 3414 |
. . . . . . . . . . . . . 14
⊢
([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡}) |
17 | 14, 16 | bitri 278 |
. . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡}) |
18 | | bj-csbsn 34826 |
. . . . . . . . . . . . . 14
⊢
⦋𝑧 /
𝑡⦌{𝑡} = {𝑧} |
19 | 18 | eqeq2i 2750 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ⦋𝑧 / 𝑡⦌{𝑡} ↔ 𝑢 = {𝑧}) |
20 | 17, 19 | bitri 278 |
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = {𝑧}) |
21 | | eqtr2 2761 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → {𝑡} = {𝑧}) |
22 | | vex 3412 |
. . . . . . . . . . . . . 14
⊢ 𝑡 ∈ V |
23 | 22 | sneqr 4751 |
. . . . . . . . . . . . 13
⊢ ({𝑡} = {𝑧} → 𝑡 = 𝑧) |
24 | 21, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → 𝑡 = 𝑧) |
25 | 20, 24 | sylan2b 597 |
. . . . . . . . . . 11
⊢ ((𝑢 = {𝑡} ∧ [𝑧 / 𝑡]𝑢 = {𝑡}) → 𝑡 = 𝑧) |
26 | 12, 13, 25 | syl2anb 601 |
. . . . . . . . . 10
⊢
((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧) |
27 | 26 | gen2 1804 |
. . . . . . . . 9
⊢
∀𝑡∀𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧) |
28 | | nfa1 2152 |
. . . . . . . . . 10
⊢
Ⅎ𝑧∀𝑧 𝑢 = {𝑡} |
29 | 28 | mo 2564 |
. . . . . . . . 9
⊢
(∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) ↔ ∀𝑡∀𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)) |
30 | 27, 29 | mpbir 234 |
. . . . . . . 8
⊢
∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) |
31 | 11, 30 | mpg 1805 |
. . . . . . 7
⊢
∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) |
32 | | bj-sbel1 34827 |
. . . . . . . . . . . 12
⊢ ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ ⦋𝑡 / 𝑥⦌{𝑥} ∈ 𝑦) |
33 | | bj-csbsn 34826 |
. . . . . . . . . . . . 13
⊢
⦋𝑡 /
𝑥⦌{𝑥} = {𝑡} |
34 | 33 | eleq1i 2828 |
. . . . . . . . . . . 12
⊢
(⦋𝑡 /
𝑥⦌{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦) |
35 | 32, 34 | bitri 278 |
. . . . . . . . . . 11
⊢ ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦) |
36 | | df-clab 2715 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ [𝑡 / 𝑥]{𝑥} ∈ 𝑦) |
37 | 12 | anbi2i 626 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ (𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
38 | | eleq1a 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝑦 → ({𝑡} = 𝑢 → {𝑡} ∈ 𝑦)) |
39 | 38 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑡} = 𝑢 → (𝑢 ∈ 𝑦 → {𝑡} ∈ 𝑦)) |
40 | 39 | eqcoms 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = {𝑡} → (𝑢 ∈ 𝑦 → {𝑡} ∈ 𝑦)) |
41 | 40 | imdistanri 573 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡}) → ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
42 | | eleq1a 2833 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑡} ∈ 𝑦 → (𝑢 = {𝑡} → 𝑢 ∈ 𝑦)) |
43 | 42 | impac 556 |
. . . . . . . . . . . . . . 15
⊢ (({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) → (𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
44 | 41, 43 | impbii 212 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
45 | 37, 44 | bitri 278 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
46 | 45 | exbii 1855 |
. . . . . . . . . . . 12
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) |
47 | | snex 5324 |
. . . . . . . . . . . . . 14
⊢ {𝑡} ∈ V |
48 | 47 | isseti 3423 |
. . . . . . . . . . . . 13
⊢
∃𝑢 𝑢 = {𝑡} |
49 | | 19.42v 1962 |
. . . . . . . . . . . . 13
⊢
(∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ ∃𝑢 𝑢 = {𝑡})) |
50 | 48, 49 | mpbiran2 710 |
. . . . . . . . . . . 12
⊢
(∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦) |
51 | 46, 50 | bitri 278 |
. . . . . . . . . . 11
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦) |
52 | 35, 36, 51 | 3bitr4ri 307 |
. . . . . . . . . 10
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}) |
53 | 52 | bibi2i 341 |
. . . . . . . . 9
⊢ ((𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ (𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) |
54 | 53 | albii 1827 |
. . . . . . . 8
⊢
(∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) |
55 | 54 | exbii 1855 |
. . . . . . 7
⊢
(∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) |
56 | 31, 55 | mpbi 233 |
. . . . . 6
⊢
∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}) |
57 | | dfcleq 2730 |
. . . . . . 7
⊢ (𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) |
58 | 57 | exbii 1855 |
. . . . . 6
⊢
(∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) |
59 | 56, 58 | mpbir 234 |
. . . . 5
⊢
∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} |
60 | 59 | issetri 3424 |
. . . 4
⊢ {𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V |
61 | 10, 60 | mpg 1805 |
. . 3
⊢
(∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) |
62 | 8, 61 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) |
63 | | ax5e 1920 |
. 2
⊢
(∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) |
64 | 62, 63 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) |