Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snsetex Structured version   Visualization version   GIF version

Theorem bj-snsetex 36965
Description: The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5278. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snsetex (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-snsetex
Dummy variables 𝑦 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2822 . 2 (𝐴𝑉 → ∃𝑦 𝑦 = 𝐴)
2 eleq2 2829 . . . . 5 (𝑦 = 𝐴 → ({𝑥} ∈ 𝑦 ↔ {𝑥} ∈ 𝐴))
32abbidv 2807 . . . 4 (𝑦 = 𝐴 → {𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴})
4 eleq1 2828 . . . . 5 ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V ↔ {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
54biimpd 229 . . . 4 ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
63, 5syl 17 . . 3 (𝑦 = 𝐴 → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
76eximi 1834 . 2 (∃𝑦 𝑦 = 𝐴 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
8 bj-eximcom 36645 . . . 4 (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
98com12 32 . . 3 (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
10 ax-rep 5278 . . . . . . 7 (∀𝑢𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) → ∃𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})))
11 19.3v 1980 . . . . . . . . . 10 (∀𝑧 𝑢 = {𝑡} ↔ 𝑢 = {𝑡})
1211sbbii 2075 . . . . . . . . . 10 ([𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡})
13 sbsbc 3791 . . . . . . . . . . . . 13 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡})
14 sbceq2g 4418 . . . . . . . . . . . . . 14 (𝑧 ∈ V → ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡}))
1514elv 3484 . . . . . . . . . . . . 13 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡})
1613, 15bitri 275 . . . . . . . . . . . 12 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡})
17 bj-csbsn 36906 . . . . . . . . . . . . 13 𝑧 / 𝑡{𝑡} = {𝑧}
1817eqeq2i 2749 . . . . . . . . . . . 12 (𝑢 = 𝑧 / 𝑡{𝑡} ↔ 𝑢 = {𝑧})
1916, 18bitri 275 . . . . . . . . . . 11 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = {𝑧})
20 eqtr2 2760 . . . . . . . . . . . 12 ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → {𝑡} = {𝑧})
21 vex 3483 . . . . . . . . . . . . 13 𝑡 ∈ V
2221sneqr 4839 . . . . . . . . . . . 12 ({𝑡} = {𝑧} → 𝑡 = 𝑧)
2320, 22syl 17 . . . . . . . . . . 11 ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → 𝑡 = 𝑧)
2419, 23sylan2b 594 . . . . . . . . . 10 ((𝑢 = {𝑡} ∧ [𝑧 / 𝑡]𝑢 = {𝑡}) → 𝑡 = 𝑧)
2511, 12, 24syl2anb 598 . . . . . . . . 9 ((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)
2625gen2 1795 . . . . . . . 8 𝑡𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)
27 nfa1 2150 . . . . . . . . 9 𝑧𝑧 𝑢 = {𝑡}
2827mo 2564 . . . . . . . 8 (∃𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) ↔ ∀𝑡𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧))
2926, 28mpbir 231 . . . . . . 7 𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧)
3010, 29mpg 1796 . . . . . 6 𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}))
31 bj-sbel1 36907 . . . . . . . . . . 11 ([𝑡 / 𝑥]{𝑥} ∈ 𝑦𝑡 / 𝑥{𝑥} ∈ 𝑦)
32 bj-csbsn 36906 . . . . . . . . . . . 12 𝑡 / 𝑥{𝑥} = {𝑡}
3332eleq1i 2831 . . . . . . . . . . 11 (𝑡 / 𝑥{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦)
3431, 33bitri 275 . . . . . . . . . 10 ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦)
35 df-clab 2714 . . . . . . . . . 10 (𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ [𝑡 / 𝑥]{𝑥} ∈ 𝑦)
3611anbi2i 623 . . . . . . . . . . . . 13 ((𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ (𝑢𝑦𝑢 = {𝑡}))
37 eleq1a 2835 . . . . . . . . . . . . . . . . 17 (𝑢𝑦 → ({𝑡} = 𝑢 → {𝑡} ∈ 𝑦))
3837com12 32 . . . . . . . . . . . . . . . 16 ({𝑡} = 𝑢 → (𝑢𝑦 → {𝑡} ∈ 𝑦))
3938eqcoms 2744 . . . . . . . . . . . . . . 15 (𝑢 = {𝑡} → (𝑢𝑦 → {𝑡} ∈ 𝑦))
4039imdistanri 569 . . . . . . . . . . . . . 14 ((𝑢𝑦𝑢 = {𝑡}) → ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
41 eleq1a 2835 . . . . . . . . . . . . . . 15 ({𝑡} ∈ 𝑦 → (𝑢 = {𝑡} → 𝑢𝑦))
4241impac 552 . . . . . . . . . . . . . 14 (({𝑡} ∈ 𝑦𝑢 = {𝑡}) → (𝑢𝑦𝑢 = {𝑡}))
4340, 42impbii 209 . . . . . . . . . . . . 13 ((𝑢𝑦𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
4436, 43bitri 275 . . . . . . . . . . . 12 ((𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
4544exbii 1847 . . . . . . . . . . 11 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}))
46 vsnex 5433 . . . . . . . . . . . . 13 {𝑡} ∈ V
4746isseti 3497 . . . . . . . . . . . 12 𝑢 𝑢 = {𝑡}
48 19.42v 1952 . . . . . . . . . . . 12 (∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ ∃𝑢 𝑢 = {𝑡}))
4947, 48mpbiran2 710 . . . . . . . . . . 11 (∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦)
5045, 49bitri 275 . . . . . . . . . 10 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦)
5134, 35, 503bitr4ri 304 . . . . . . . . 9 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})
5251bibi2i 337 . . . . . . . 8 ((𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ (𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5352albii 1818 . . . . . . 7 (∀𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∀𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5453exbii 1847 . . . . . 6 (∃𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∃𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5530, 54mpbi 230 . . . . 5 𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})
56 dfcleq 2729 . . . . . 6 (𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∀𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5756exbii 1847 . . . . 5 (∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∃𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5855, 57mpbir 231 . . . 4 𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦}
5958issetri 3498 . . 3 {𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V
609, 59mpg 1796 . 2 (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
61 ax5e 1911 . 2 (∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
621, 7, 60, 614syl 19 1 (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  [wsb 2063  wcel 2107  {cab 2713  Vcvv 3479  [wsbc 3787  csb 3898  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-nul 4333  df-sn 4626  df-pr 4628
This theorem is referenced by:  bj-clexab  36966  bj-snglex  36975
  Copyright terms: Public domain W3C validator