Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snsetex Structured version   Visualization version   GIF version

Theorem bj-snsetex 35080
Description: The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5205. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snsetex (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-snsetex
Dummy variables 𝑦 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2820 . . . 4 (𝐴𝑉 → ∃𝑦 𝑦 = 𝐴)
2 eleq2 2827 . . . . . . 7 (𝑦 = 𝐴 → ({𝑥} ∈ 𝑦 ↔ {𝑥} ∈ 𝐴))
32abbidv 2808 . . . . . 6 (𝑦 = 𝐴 → {𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴})
4 eleq1 2826 . . . . . . 7 ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V ↔ {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
54biimpd 228 . . . . . 6 ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
63, 5syl 17 . . . . 5 (𝑦 = 𝐴 → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
76eximi 1838 . . . 4 (∃𝑦 𝑦 = 𝐴 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
81, 7syl 17 . . 3 (𝐴𝑉 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
9 bj-eximcom 34751 . . . . 5 (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
109com12 32 . . . 4 (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V))
11 ax-rep 5205 . . . . . . . 8 (∀𝑢𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) → ∃𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})))
12 19.3v 1986 . . . . . . . . . . 11 (∀𝑧 𝑢 = {𝑡} ↔ 𝑢 = {𝑡})
1312sbbii 2080 . . . . . . . . . . 11 ([𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡})
14 sbsbc 3715 . . . . . . . . . . . . . 14 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡})
15 sbceq2g 4347 . . . . . . . . . . . . . . 15 (𝑧 ∈ V → ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡}))
1615elv 3428 . . . . . . . . . . . . . 14 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡})
1714, 16bitri 274 . . . . . . . . . . . . 13 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = 𝑧 / 𝑡{𝑡})
18 bj-csbsn 35016 . . . . . . . . . . . . . 14 𝑧 / 𝑡{𝑡} = {𝑧}
1918eqeq2i 2751 . . . . . . . . . . . . 13 (𝑢 = 𝑧 / 𝑡{𝑡} ↔ 𝑢 = {𝑧})
2017, 19bitri 274 . . . . . . . . . . . 12 ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = {𝑧})
21 eqtr2 2762 . . . . . . . . . . . . 13 ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → {𝑡} = {𝑧})
22 vex 3426 . . . . . . . . . . . . . 14 𝑡 ∈ V
2322sneqr 4768 . . . . . . . . . . . . 13 ({𝑡} = {𝑧} → 𝑡 = 𝑧)
2421, 23syl 17 . . . . . . . . . . . 12 ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → 𝑡 = 𝑧)
2520, 24sylan2b 593 . . . . . . . . . . 11 ((𝑢 = {𝑡} ∧ [𝑧 / 𝑡]𝑢 = {𝑡}) → 𝑡 = 𝑧)
2612, 13, 25syl2anb 597 . . . . . . . . . 10 ((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)
2726gen2 1800 . . . . . . . . 9 𝑡𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)
28 nfa1 2150 . . . . . . . . . 10 𝑧𝑧 𝑢 = {𝑡}
2928mo 2565 . . . . . . . . 9 (∃𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) ↔ ∀𝑡𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧))
3027, 29mpbir 230 . . . . . . . 8 𝑧𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧)
3111, 30mpg 1801 . . . . . . 7 𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}))
32 bj-sbel1 35017 . . . . . . . . . . . 12 ([𝑡 / 𝑥]{𝑥} ∈ 𝑦𝑡 / 𝑥{𝑥} ∈ 𝑦)
33 bj-csbsn 35016 . . . . . . . . . . . . 13 𝑡 / 𝑥{𝑥} = {𝑡}
3433eleq1i 2829 . . . . . . . . . . . 12 (𝑡 / 𝑥{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦)
3532, 34bitri 274 . . . . . . . . . . 11 ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦)
36 df-clab 2716 . . . . . . . . . . 11 (𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ [𝑡 / 𝑥]{𝑥} ∈ 𝑦)
3712anbi2i 622 . . . . . . . . . . . . . 14 ((𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ (𝑢𝑦𝑢 = {𝑡}))
38 eleq1a 2834 . . . . . . . . . . . . . . . . . 18 (𝑢𝑦 → ({𝑡} = 𝑢 → {𝑡} ∈ 𝑦))
3938com12 32 . . . . . . . . . . . . . . . . 17 ({𝑡} = 𝑢 → (𝑢𝑦 → {𝑡} ∈ 𝑦))
4039eqcoms 2746 . . . . . . . . . . . . . . . 16 (𝑢 = {𝑡} → (𝑢𝑦 → {𝑡} ∈ 𝑦))
4140imdistanri 569 . . . . . . . . . . . . . . 15 ((𝑢𝑦𝑢 = {𝑡}) → ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
42 eleq1a 2834 . . . . . . . . . . . . . . . 16 ({𝑡} ∈ 𝑦 → (𝑢 = {𝑡} → 𝑢𝑦))
4342impac 552 . . . . . . . . . . . . . . 15 (({𝑡} ∈ 𝑦𝑢 = {𝑡}) → (𝑢𝑦𝑢 = {𝑡}))
4441, 43impbii 208 . . . . . . . . . . . . . 14 ((𝑢𝑦𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
4537, 44bitri 274 . . . . . . . . . . . . 13 ((𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦𝑢 = {𝑡}))
4645exbii 1851 . . . . . . . . . . . 12 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}))
47 snex 5349 . . . . . . . . . . . . . 14 {𝑡} ∈ V
4847isseti 3437 . . . . . . . . . . . . 13 𝑢 𝑢 = {𝑡}
49 19.42v 1958 . . . . . . . . . . . . 13 (∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ ∃𝑢 𝑢 = {𝑡}))
5048, 49mpbiran2 706 . . . . . . . . . . . 12 (∃𝑢({𝑡} ∈ 𝑦𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦)
5146, 50bitri 274 . . . . . . . . . . 11 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦)
5235, 36, 513bitr4ri 303 . . . . . . . . . 10 (∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})
5352bibi2i 337 . . . . . . . . 9 ((𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ (𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5453albii 1823 . . . . . . . 8 (∀𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∀𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5554exbii 1851 . . . . . . 7 (∃𝑧𝑡(𝑡𝑧 ↔ ∃𝑢(𝑢𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∃𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5631, 55mpbi 229 . . . . . 6 𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})
57 dfcleq 2731 . . . . . . 7 (𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∀𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5857exbii 1851 . . . . . 6 (∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∃𝑧𝑡(𝑡𝑧𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}))
5956, 58mpbir 230 . . . . 5 𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦}
6059issetri 3438 . . . 4 {𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V
6110, 60mpg 1801 . . 3 (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
628, 61syl 17 . 2 (𝐴𝑉 → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
63 ax5e 1916 . 2 (∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
6462, 63syl 17 1 (𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715  Vcvv 3422  [wsbc 3711  csb 3828  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  bj-clex  35081  bj-snglex  35090
  Copyright terms: Public domain W3C validator