| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elisset 2822 | . 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | 
| 2 |  | eleq2 2829 | . . . . 5
⊢ (𝑦 = 𝐴 → ({𝑥} ∈ 𝑦 ↔ {𝑥} ∈ 𝐴)) | 
| 3 | 2 | abbidv 2807 | . . . 4
⊢ (𝑦 = 𝐴 → {𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴}) | 
| 4 |  | eleq1 2828 | . . . . 5
⊢ ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V ↔ {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 5 | 4 | biimpd 229 | . . . 4
⊢ ({𝑥 ∣ {𝑥} ∈ 𝑦} = {𝑥 ∣ {𝑥} ∈ 𝐴} → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 6 | 3, 5 | syl 17 | . . 3
⊢ (𝑦 = 𝐴 → ({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 7 | 6 | eximi 1834 | . 2
⊢
(∃𝑦 𝑦 = 𝐴 → ∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 8 |  | bj-eximcom 36645 | . . . 4
⊢
(∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → (∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 9 | 8 | com12 32 | . . 3
⊢
(∀𝑦{𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → (∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)) | 
| 10 |  | ax-rep 5278 | . . . . . . 7
⊢
(∀𝑢∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) → ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}))) | 
| 11 |  | 19.3v 1980 | . . . . . . . . . 10
⊢
(∀𝑧 𝑢 = {𝑡} ↔ 𝑢 = {𝑡}) | 
| 12 | 11 | sbbii 2075 | . . . . . . . . . 10
⊢ ([𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡}) | 
| 13 |  | sbsbc 3791 | . . . . . . . . . . . . 13
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ [𝑧 / 𝑡]𝑢 = {𝑡}) | 
| 14 |  | sbceq2g 4418 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ V → ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡})) | 
| 15 | 14 | elv 3484 | . . . . . . . . . . . . 13
⊢
([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡}) | 
| 16 | 13, 15 | bitri 275 | . . . . . . . . . . . 12
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = ⦋𝑧 / 𝑡⦌{𝑡}) | 
| 17 |  | bj-csbsn 36906 | . . . . . . . . . . . . 13
⊢
⦋𝑧 /
𝑡⦌{𝑡} = {𝑧} | 
| 18 | 17 | eqeq2i 2749 | . . . . . . . . . . . 12
⊢ (𝑢 = ⦋𝑧 / 𝑡⦌{𝑡} ↔ 𝑢 = {𝑧}) | 
| 19 | 16, 18 | bitri 275 | . . . . . . . . . . 11
⊢ ([𝑧 / 𝑡]𝑢 = {𝑡} ↔ 𝑢 = {𝑧}) | 
| 20 |  | eqtr2 2760 | . . . . . . . . . . . 12
⊢ ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → {𝑡} = {𝑧}) | 
| 21 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑡 ∈ V | 
| 22 | 21 | sneqr 4839 | . . . . . . . . . . . 12
⊢ ({𝑡} = {𝑧} → 𝑡 = 𝑧) | 
| 23 | 20, 22 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑢 = {𝑡} ∧ 𝑢 = {𝑧}) → 𝑡 = 𝑧) | 
| 24 | 19, 23 | sylan2b 594 | . . . . . . . . . 10
⊢ ((𝑢 = {𝑡} ∧ [𝑧 / 𝑡]𝑢 = {𝑡}) → 𝑡 = 𝑧) | 
| 25 | 11, 12, 24 | syl2anb 598 | . . . . . . . . 9
⊢
((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧) | 
| 26 | 25 | gen2 1795 | . . . . . . . 8
⊢
∀𝑡∀𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧) | 
| 27 |  | nfa1 2150 | . . . . . . . . 9
⊢
Ⅎ𝑧∀𝑧 𝑢 = {𝑡} | 
| 28 | 27 | mo 2564 | . . . . . . . 8
⊢
(∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) ↔ ∀𝑡∀𝑧((∀𝑧 𝑢 = {𝑡} ∧ [𝑧 / 𝑡]∀𝑧 𝑢 = {𝑡}) → 𝑡 = 𝑧)) | 
| 29 | 26, 28 | mpbir 231 | . . . . . . 7
⊢
∃𝑧∀𝑡(∀𝑧 𝑢 = {𝑡} → 𝑡 = 𝑧) | 
| 30 | 10, 29 | mpg 1796 | . . . . . 6
⊢
∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) | 
| 31 |  | bj-sbel1 36907 | . . . . . . . . . . 11
⊢ ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ ⦋𝑡 / 𝑥⦌{𝑥} ∈ 𝑦) | 
| 32 |  | bj-csbsn 36906 | . . . . . . . . . . . 12
⊢
⦋𝑡 /
𝑥⦌{𝑥} = {𝑡} | 
| 33 | 32 | eleq1i 2831 | . . . . . . . . . . 11
⊢
(⦋𝑡 /
𝑥⦌{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦) | 
| 34 | 31, 33 | bitri 275 | . . . . . . . . . 10
⊢ ([𝑡 / 𝑥]{𝑥} ∈ 𝑦 ↔ {𝑡} ∈ 𝑦) | 
| 35 |  | df-clab 2714 | . . . . . . . . . 10
⊢ (𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ [𝑡 / 𝑥]{𝑥} ∈ 𝑦) | 
| 36 | 11 | anbi2i 623 | . . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ (𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 37 |  | eleq1a 2835 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑦 → ({𝑡} = 𝑢 → {𝑡} ∈ 𝑦)) | 
| 38 | 37 | com12 32 | . . . . . . . . . . . . . . . 16
⊢ ({𝑡} = 𝑢 → (𝑢 ∈ 𝑦 → {𝑡} ∈ 𝑦)) | 
| 39 | 38 | eqcoms 2744 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = {𝑡} → (𝑢 ∈ 𝑦 → {𝑡} ∈ 𝑦)) | 
| 40 | 39 | imdistanri 569 | . . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡}) → ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 41 |  | eleq1a 2835 | . . . . . . . . . . . . . . 15
⊢ ({𝑡} ∈ 𝑦 → (𝑢 = {𝑡} → 𝑢 ∈ 𝑦)) | 
| 42 | 41 | impac 552 | . . . . . . . . . . . . . 14
⊢ (({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) → (𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 43 | 40, 42 | impbii 209 | . . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 44 | 36, 43 | bitri 275 | . . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 45 | 44 | exbii 1847 | . . . . . . . . . . 11
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ ∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡})) | 
| 46 |  | vsnex 5433 | . . . . . . . . . . . . 13
⊢ {𝑡} ∈ V | 
| 47 | 46 | isseti 3497 | . . . . . . . . . . . 12
⊢
∃𝑢 𝑢 = {𝑡} | 
| 48 |  | 19.42v 1952 | . . . . . . . . . . . 12
⊢
(∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ ({𝑡} ∈ 𝑦 ∧ ∃𝑢 𝑢 = {𝑡})) | 
| 49 | 47, 48 | mpbiran2 710 | . . . . . . . . . . 11
⊢
(∃𝑢({𝑡} ∈ 𝑦 ∧ 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦) | 
| 50 | 45, 49 | bitri 275 | . . . . . . . . . 10
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ {𝑡} ∈ 𝑦) | 
| 51 | 34, 35, 50 | 3bitr4ri 304 | . . . . . . . . 9
⊢
(∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡}) ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}) | 
| 52 | 51 | bibi2i 337 | . . . . . . . 8
⊢ ((𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ (𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) | 
| 53 | 52 | albii 1818 | . . . . . . 7
⊢
(∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) | 
| 54 | 53 | exbii 1847 | . . . . . 6
⊢
(∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ ∃𝑢(𝑢 ∈ 𝑦 ∧ ∀𝑧 𝑢 = {𝑡})) ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) | 
| 55 | 30, 54 | mpbi 230 | . . . . 5
⊢
∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦}) | 
| 56 |  | dfcleq 2729 | . . . . . 6
⊢ (𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) | 
| 57 | 56 | exbii 1847 | . . . . 5
⊢
(∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ 𝑡 ∈ {𝑥 ∣ {𝑥} ∈ 𝑦})) | 
| 58 | 55, 57 | mpbir 231 | . . . 4
⊢
∃𝑧 𝑧 = {𝑥 ∣ {𝑥} ∈ 𝑦} | 
| 59 | 58 | issetri 3498 | . . 3
⊢ {𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V | 
| 60 | 9, 59 | mpg 1796 | . 2
⊢
(∃𝑦({𝑥 ∣ {𝑥} ∈ 𝑦} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) → ∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) | 
| 61 |  | ax5e 1911 | . 2
⊢
(∃𝑦{𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) | 
| 62 | 1, 7, 60, 61 | 4syl 19 | 1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) |