| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version | ||
| Description: A variant of al2imi 1814: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2150, sps 2184 and eximd 2215, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | al2imi 1814 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 4 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
| 5 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
| 7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: alexbii 1832 exim 1833 eximdh 1863 19.29 1872 19.29r 1873 19.35 1876 19.25 1879 19.30 1880 19.40b 1887 exintr 1891 19.36imv 1944 speimfw 1962 aeveq 2055 sbequ2 2248 2ax6elem 2473 sb1 2481 dfeumo 2535 mo3 2562 mo4 2564 mopick 2623 2mo 2646 ssel 3957 ssrexv 4033 axprlem4 5406 ssopab2 5531 ssoprab2 7483 axextnd 10613 bj-2exim 36571 bj-exalimi 36593 bj-cbvalimt 36599 bj-eximcom 36603 bj-subst 36621 bj-gabss 36895 wl-mo3t 37536 pm10.56 44346 2exim 44355 |
| Copyright terms: Public domain | W3C validator |