MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleximi Structured version   Visualization version   GIF version

Theorem aleximi 1832
Description: A variant of al2imi 1815: instead of applying 𝑥 quantifiers to the final implication, replace them with 𝑥. A shorter proof is possible using nfa1 2152, sps 2186 and eximd 2217, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
aleximi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
aleximi (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem aleximi
StepHypRef Expression
1 aleximi.1 . . . . 5 (𝜑 → (𝜓𝜒))
21con3d 152 . . . 4 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32al2imi 1815 . . 3 (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓))
4 alnex 1781 . . 3 (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒)
5 alnex 1781 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
63, 4, 53imtr3g 295 . 2 (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓))
76con4d 115 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  alexbii  1833  exim  1834  eximdh  1864  19.29  1873  19.29r  1874  19.35  1877  19.25  1880  19.30  1881  19.40b  1888  exintr  1892  19.36imv  1945  speimfw  1963  aeveq  2057  sbequ2  2250  2ax6elem  2475  sb1  2483  dfeumo  2537  mo3  2564  mo4  2566  mopick  2625  2mo  2648  ssel  3957  ssrexv  4033  axprlem4  5401  ssopab2  5526  ssoprab2  7480  axextnd  10610  bj-2exim  36634  bj-exalimi  36656  bj-cbvalimt  36662  bj-eximcom  36666  bj-subst  36684  bj-gabss  36958  wl-mo3t  37599  pm10.56  44369  2exim  44378
  Copyright terms: Public domain W3C validator