![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version |
Description: A variant of al2imi 1813: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2152, sps 2186 and eximd 2217, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | al2imi 1813 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
4 | alnex 1779 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
5 | alnex 1779 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: alexbii 1831 exim 1832 eximdh 1863 19.29 1872 19.29r 1873 19.35 1876 19.25 1879 19.30 1880 19.40b 1887 exintr 1891 19.36imv 1944 speimfw 1963 aeveq 2056 sbequ2 2250 2ax6elem 2478 sb1 2486 dfeumo 2540 mo3 2567 mo4 2569 mopick 2628 2mo 2651 ssel 4002 ssrexv 4078 ssopab2 5565 ssoprab2 7518 axextnd 10660 bj-2exim 36577 bj-exalimi 36599 bj-cbvalimt 36605 bj-eximcom 36609 bj-subst 36627 bj-gabss 36901 wl-mo3t 37530 pm10.56 44339 2exim 44348 |
Copyright terms: Public domain | W3C validator |