Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version |
Description: A variant of al2imi 1819: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2150, sps 2180 and eximd 2212, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | al2imi 1819 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
4 | alnex 1785 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
5 | alnex 1785 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 3, 4, 5 | 3imtr3g 294 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: alexbii 1836 exim 1837 eximdh 1868 19.29 1877 19.29r 1878 19.35 1881 19.25 1884 19.30 1885 19.40b 1892 exintr 1896 19.36imv 1949 speimfw 1968 aeveq 2060 sbequ2 2244 2ax6elem 2470 sb1 2479 dfeumo 2537 mo3 2564 mo4 2566 mopick 2627 2mo 2650 ssel 3910 ssopab2 5452 ssoprab2 7321 axextnd 10278 bj-2exim 34720 bj-exalimi 34741 bj-cbvalimt 34747 bj-eximcom 34751 bj-subst 34769 bj-gabss 35050 wl-mo3t 35658 pm10.56 41877 2exim 41886 |
Copyright terms: Public domain | W3C validator |