| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version | ||
| Description: A variant of al2imi 1816: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2154, sps 2188 and eximd 2219, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | al2imi 1816 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 4 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
| 5 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
| 7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: alexbii 1834 exim 1835 eximdh 1865 19.29 1874 19.29r 1875 19.35 1878 19.25 1881 19.30 1882 19.40b 1889 exintr 1893 19.36imv 1946 speimfw 1964 aeveq 2059 sbequ2 2252 2ax6elem 2470 sb1 2478 dfeumo 2532 mo3 2559 mo4 2561 mopick 2620 2mo 2643 ssel 3928 ssrexv 4004 axprlem4 5364 ssopab2 5486 ssoprab2 7414 axextnd 10479 bj-2exim 36644 bj-exalimi 36666 bj-cbvalimt 36672 bj-eximcom 36676 bj-subst 36694 bj-gabss 36968 wl-mo3t 37609 pm10.56 44402 2exim 44411 |
| Copyright terms: Public domain | W3C validator |