MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleximi Structured version   Visualization version   GIF version

Theorem aleximi 1834
Description: A variant of al2imi 1818: instead of applying 𝑥 quantifiers to the final implication, replace them with 𝑥. A shorter proof is possible using nfa1 2148, sps 2178 and eximd 2209, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
aleximi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
aleximi (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem aleximi
StepHypRef Expression
1 aleximi.1 . . . . 5 (𝜑 → (𝜓𝜒))
21con3d 152 . . . 4 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32al2imi 1818 . . 3 (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓))
4 alnex 1784 . . 3 (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒)
5 alnex 1784 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
63, 4, 53imtr3g 295 . 2 (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓))
76con4d 115 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  alexbii  1835  exim  1836  eximdh  1867  19.29  1876  19.29r  1877  19.35  1880  19.25  1883  19.30  1884  19.40b  1891  exintr  1895  19.36imv  1948  speimfw  1967  aeveq  2059  sbequ2  2241  2ax6elem  2470  sb1  2479  dfeumo  2537  mo3  2564  mo4  2566  mopick  2627  2mo  2650  ssel  3914  ssopab2  5459  ssoprab2  7343  axextnd  10347  bj-2exim  34793  bj-exalimi  34814  bj-cbvalimt  34820  bj-eximcom  34824  bj-subst  34842  bj-gabss  35123  wl-mo3t  35731  pm10.56  41988  2exim  41997
  Copyright terms: Public domain W3C validator