MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleximi Structured version   Visualization version   GIF version

Theorem aleximi 1829
Description: A variant of al2imi 1812: instead of applying 𝑥 quantifiers to the final implication, replace them with 𝑥. A shorter proof is possible using nfa1 2149, sps 2183 and eximd 2214, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
aleximi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
aleximi (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem aleximi
StepHypRef Expression
1 aleximi.1 . . . . 5 (𝜑 → (𝜓𝜒))
21con3d 152 . . . 4 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32al2imi 1812 . . 3 (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓))
4 alnex 1778 . . 3 (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒)
5 alnex 1778 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
63, 4, 53imtr3g 295 . 2 (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓))
76con4d 115 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  alexbii  1830  exim  1831  eximdh  1862  19.29  1871  19.29r  1872  19.35  1875  19.25  1878  19.30  1879  19.40b  1886  exintr  1890  19.36imv  1943  speimfw  1961  aeveq  2054  sbequ2  2247  2ax6elem  2473  sb1  2481  dfeumo  2535  mo3  2562  mo4  2564  mopick  2623  2mo  2646  ssel  3989  ssrexv  4065  axprlem4  5432  ssopab2  5556  ssoprab2  7501  axextnd  10629  bj-2exim  36594  bj-exalimi  36616  bj-cbvalimt  36622  bj-eximcom  36626  bj-subst  36644  bj-gabss  36918  wl-mo3t  37557  pm10.56  44366  2exim  44375
  Copyright terms: Public domain W3C validator