![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version |
Description: A variant of al2imi 1818: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2149, sps 2179 and eximd 2210, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | al2imi 1818 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
4 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
5 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: alexbii 1836 exim 1837 eximdh 1868 19.29 1877 19.29r 1878 19.35 1881 19.25 1884 19.30 1885 19.40b 1892 exintr 1896 19.36imv 1949 speimfw 1968 aeveq 2060 sbequ2 2242 2ax6elem 2470 sb1 2478 dfeumo 2532 mo3 2559 mo4 2561 mopick 2622 2mo 2645 ssel 3976 ssopab2 5547 ssoprab2 7477 axextnd 10586 bj-2exim 35537 bj-exalimi 35558 bj-cbvalimt 35564 bj-eximcom 35568 bj-subst 35586 bj-gabss 35863 wl-mo3t 36489 pm10.56 43177 2exim 43186 |
Copyright terms: Public domain | W3C validator |