| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version | ||
| Description: A variant of al2imi 1815: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2152, sps 2186 and eximd 2217, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | al2imi 1815 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 4 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
| 5 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
| 7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexbii 1833 exim 1834 eximdh 1864 19.29 1873 19.29r 1874 19.35 1877 19.25 1880 19.30 1881 19.40b 1888 exintr 1892 19.36imv 1945 speimfw 1963 aeveq 2057 sbequ2 2250 2ax6elem 2468 sb1 2476 dfeumo 2530 mo3 2557 mo4 2559 mopick 2618 2mo 2641 ssel 3940 ssrexv 4016 axprlem4 5381 ssopab2 5506 ssoprab2 7457 axextnd 10544 bj-2exim 36599 bj-exalimi 36621 bj-cbvalimt 36627 bj-eximcom 36631 bj-subst 36649 bj-gabss 36923 wl-mo3t 37564 pm10.56 44359 2exim 44368 |
| Copyright terms: Public domain | W3C validator |