| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version | ||
| Description: A variant of al2imi 1816: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2156, sps 2190 and eximd 2221, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | al2imi 1816 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 4 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
| 5 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
| 7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: alexbii 1834 exim 1835 eximdh 1865 19.29 1874 19.29r 1875 19.35 1878 19.25 1881 19.30 1882 19.40b 1889 exintr 1893 19.36imv 1946 speimfw 1964 aeveq 2059 sbequ2 2254 2ax6elem 2472 sb1 2480 dfeumo 2534 mo3 2561 mo4 2563 mopick 2622 2mo 2645 ssel 3924 ssrexv 4000 axprlem4 5366 ssopab2 5489 ssoprab2 7420 axextnd 10489 bj-2exim 36676 bj-exalimi 36698 bj-cbvalimt 36704 bj-eximcom 36708 bj-subst 36726 bj-gabss 37000 wl-mo3t 37641 pm10.56 44487 2exim 44496 |
| Copyright terms: Public domain | W3C validator |