| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version | ||
| Description: A variant of al2imi 1814: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2150, sps 2184 and eximd 2215, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | al2imi 1814 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 4 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
| 5 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
| 7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: alexbii 1832 exim 1833 eximdh 1863 19.29 1872 19.29r 1873 19.35 1876 19.25 1879 19.30 1880 19.40b 1887 exintr 1891 19.36imv 1944 speimfw 1962 aeveq 2055 sbequ2 2248 2ax6elem 2474 sb1 2482 dfeumo 2536 mo3 2563 mo4 2565 mopick 2624 2mo 2647 ssel 3976 ssrexv 4052 axprlem4 5425 ssopab2 5550 ssoprab2 7502 axextnd 10632 bj-2exim 36613 bj-exalimi 36635 bj-cbvalimt 36641 bj-eximcom 36645 bj-subst 36663 bj-gabss 36937 wl-mo3t 37578 pm10.56 44394 2exim 44403 |
| Copyright terms: Public domain | W3C validator |