![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version |
Description: A variant of al2imi 1812: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2149, sps 2183 and eximd 2214, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | al2imi 1812 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
4 | alnex 1778 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
5 | alnex 1778 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: alexbii 1830 exim 1831 eximdh 1862 19.29 1871 19.29r 1872 19.35 1875 19.25 1878 19.30 1879 19.40b 1886 exintr 1890 19.36imv 1943 speimfw 1961 aeveq 2054 sbequ2 2247 2ax6elem 2473 sb1 2481 dfeumo 2535 mo3 2562 mo4 2564 mopick 2623 2mo 2646 ssel 3989 ssrexv 4065 axprlem4 5432 ssopab2 5556 ssoprab2 7501 axextnd 10629 bj-2exim 36594 bj-exalimi 36616 bj-cbvalimt 36622 bj-eximcom 36626 bj-subst 36644 bj-gabss 36918 wl-mo3t 37557 pm10.56 44366 2exim 44375 |
Copyright terms: Public domain | W3C validator |