MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleximi Structured version   Visualization version   GIF version

Theorem aleximi 1830
Description: A variant of al2imi 1813: instead of applying 𝑥 quantifiers to the final implication, replace them with 𝑥. A shorter proof is possible using nfa1 2152, sps 2186 and eximd 2217, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
aleximi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
aleximi (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem aleximi
StepHypRef Expression
1 aleximi.1 . . . . 5 (𝜑 → (𝜓𝜒))
21con3d 152 . . . 4 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32al2imi 1813 . . 3 (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓))
4 alnex 1779 . . 3 (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒)
5 alnex 1779 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
63, 4, 53imtr3g 295 . 2 (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓))
76con4d 115 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  alexbii  1831  exim  1832  eximdh  1863  19.29  1872  19.29r  1873  19.35  1876  19.25  1879  19.30  1880  19.40b  1887  exintr  1891  19.36imv  1944  speimfw  1963  aeveq  2056  sbequ2  2250  2ax6elem  2478  sb1  2486  dfeumo  2540  mo3  2567  mo4  2569  mopick  2628  2mo  2651  ssel  4002  ssrexv  4078  ssopab2  5565  ssoprab2  7518  axextnd  10660  bj-2exim  36577  bj-exalimi  36599  bj-cbvalimt  36605  bj-eximcom  36609  bj-subst  36627  bj-gabss  36901  wl-mo3t  37530  pm10.56  44339  2exim  44348
  Copyright terms: Public domain W3C validator