Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aleximi | Structured version Visualization version GIF version |
Description: A variant of al2imi 1818: instead of applying ∀𝑥 quantifiers to the final implication, replace them with ∃𝑥. A shorter proof is possible using nfa1 2148, sps 2178 and eximd 2209, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
aleximi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
aleximi | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleximi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . . . 4 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | al2imi 1818 | . . 3 ⊢ (∀𝑥𝜑 → (∀𝑥 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
4 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜒 ↔ ¬ ∃𝑥𝜒) | |
5 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
6 | 3, 4, 5 | 3imtr3g 295 | . 2 ⊢ (∀𝑥𝜑 → (¬ ∃𝑥𝜒 → ¬ ∃𝑥𝜓)) |
7 | 6 | con4d 115 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: alexbii 1835 exim 1836 eximdh 1867 19.29 1876 19.29r 1877 19.35 1880 19.25 1883 19.30 1884 19.40b 1891 exintr 1895 19.36imv 1948 speimfw 1967 aeveq 2059 sbequ2 2241 2ax6elem 2470 sb1 2479 dfeumo 2537 mo3 2564 mo4 2566 mopick 2627 2mo 2650 ssel 3914 ssopab2 5459 ssoprab2 7343 axextnd 10347 bj-2exim 34793 bj-exalimi 34814 bj-cbvalimt 34820 bj-eximcom 34824 bj-subst 34842 bj-gabss 35123 wl-mo3t 35731 pm10.56 41988 2exim 41997 |
Copyright terms: Public domain | W3C validator |