Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt2 | Structured version Visualization version GIF version |
Description: A rule similar to modus tollens. Inference associated with con2i 139. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.) |
Ref | Expression |
---|---|
mt2.1 | ⊢ 𝜓 |
mt2.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
mt2 | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mt2.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
4 | 2, 3 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: bijust0 203 ax6dgen 2126 elirrv 9285 cardom 9675 0nnnALT 11940 nthruz 15890 hauspwdom 22560 fin1aufil 22991 rectbntr0 23901 lgam1 26118 gam1 26119 konigsberg 28522 ex-po 28700 strlem1 30513 eulerpartlemt 32238 nalfal 34519 bj-mt2bi 34676 finxpreclem3 35491 |
Copyright terms: Public domain | W3C validator |