MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt2 Structured version   Visualization version   GIF version

Theorem mt2 200
Description: A rule similar to modus tollens. Inference associated with con2i 139. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.)
Hypotheses
Ref Expression
mt2.1 𝜓
mt2.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
mt2 ¬ 𝜑

Proof of Theorem mt2
StepHypRef Expression
1 mt2.1 . . 3 𝜓
21a1i 11 . 2 (𝜑𝜓)
3 mt2.2 . 2 (𝜑 → ¬ 𝜓)
42, 3pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  bijust0  204  ax6dgen  2129  nlim2  8415  infn0  9209  elirrvOLD  9509  cardom  9901  0nnnALT  12183  nthruz  16180  hauspwdom  23404  fin1aufil  23835  rectbntr0  24737  lgam1  26990  gam1  26991  konigsberg  30219  ex-po  30397  strlem1  32212  eulerpartlemt  34341  nalfal  36379  bj-mt2bi  36544  finxpreclem3  37369  nregmodel  44994  tannpoly  46878
  Copyright terms: Public domain W3C validator