|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mt2 | Structured version Visualization version GIF version | ||
| Description: A rule similar to modus tollens. Inference associated with con2i 139. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| mt2.1 | ⊢ 𝜓 | 
| mt2.2 | ⊢ (𝜑 → ¬ 𝜓) | 
| Ref | Expression | 
|---|---|
| mt2 | ⊢ ¬ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mt2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) | 
| 3 | mt2.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: bijust0 204 ax6dgen 2127 nlim2 8529 infn0 9341 elirrv 9637 cardom 10027 0nnnALT 12304 nthruz 16290 hauspwdom 23510 fin1aufil 23941 rectbntr0 24855 lgam1 27108 gam1 27109 konigsberg 30277 ex-po 30455 strlem1 32270 eulerpartlemt 34374 nalfal 36405 bj-mt2bi 36570 finxpreclem3 37395 | 
| Copyright terms: Public domain | W3C validator |