| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2 | Structured version Visualization version GIF version | ||
| Description: A rule similar to modus tollens. Inference associated with con2i 139. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| mt2.1 | ⊢ 𝜓 |
| mt2.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| mt2 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mt2.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: bijust0 204 ax6dgen 2129 nlim2 8507 infn0 9317 elirrv 9615 cardom 10005 0nnnALT 12282 nthruz 16276 hauspwdom 23444 fin1aufil 23875 rectbntr0 24777 lgam1 27031 gam1 27032 konigsberg 30243 ex-po 30421 strlem1 32236 eulerpartlemt 34408 nalfal 36426 bj-mt2bi 36591 finxpreclem3 37416 |
| Copyright terms: Public domain | W3C validator |