| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfea | Structured version Visualization version GIF version | ||
| Description: Nonfreeness implies the equivalent of ax5ea 1913. (Contributed by BJ, 28-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-nnfea | ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfe 36732 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 2 | bj-nnfa 36729 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | syld 47 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bj-nnf 36725 |
| This theorem is referenced by: bj-nnfead 36736 bj-nnfeai 36737 bj-nnfnfTEMP 36739 bj-dfnnf3 36758 |
| Copyright terms: Public domain | W3C validator |