Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfimd Structured version   Visualization version   GIF version

Theorem bj-nnfimd 34929
Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.)
Hypotheses
Ref Expression
bj-nnfimd.1 (𝜑 → Ⅎ'𝑥𝜓)
bj-nnfimd.2 (𝜑 → Ⅎ'𝑥𝜒)
Assertion
Ref Expression
bj-nnfimd (𝜑 → Ⅎ'𝑥(𝜓𝜒))

Proof of Theorem bj-nnfimd
StepHypRef Expression
1 bj-nnfimd.1 . 2 (𝜑 → Ⅎ'𝑥𝜓)
2 bj-nnfimd.2 . 2 (𝜑 → Ⅎ'𝑥𝜒)
3 bj-nnfim 34928 . 2 ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜒) → Ⅎ'𝑥(𝜓𝜒))
41, 2, 3syl2anc 584 1 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator