|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfim | Structured version Visualization version GIF version | ||
| Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| bj-nnfim | ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.35 1876 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | bj-nnfim2 36747 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → (∃𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓))) | 
| 4 | bj-nnfim1 36746 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
| 5 | 19.38 1838 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) | 
| 7 | df-bj-nnf 36726 | . 2 ⊢ (Ⅎ'𝑥(𝜑 → 𝜓) ↔ ((∃𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 Ⅎ'wnnf 36725 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-bj-nnf 36726 | 
| This theorem is referenced by: bj-nnfimd 36749 bj-nnfbit 36754 bj-nnfbid 36755 | 
| Copyright terms: Public domain | W3C validator |