Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfim | Structured version Visualization version GIF version |
Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.) |
Ref | Expression |
---|---|
bj-nnfim | ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1878 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | bj-nnfim2 34496 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | |
3 | 1, 2 | syl5bi 245 | . 2 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → (∃𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓))) |
4 | bj-nnfim1 34495 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
5 | 19.38 1840 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
7 | df-bj-nnf 34478 | . 2 ⊢ (Ⅎ'𝑥(𝜑 → 𝜓) ↔ ((∃𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) ∧ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))) | |
8 | 3, 6, 7 | sylanbrc 586 | 1 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1536 ∃wex 1781 Ⅎ'wnnf 34477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-bj-nnf 34478 |
This theorem is referenced by: bj-nnfimd 34498 bj-nnfbit 34503 bj-nnfbid 34504 |
Copyright terms: Public domain | W3C validator |