Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnflemaa Structured version   Visualization version   GIF version

Theorem bj-nnflemaa 34509
Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 34431. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnflemaa (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))

Proof of Theorem bj-nnflemaa
StepHypRef Expression
1 alim 1812 . 2 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑥𝑦𝜑))
2 ax-11 2158 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
31, 2syl6 35 1 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1811  ax-11 2158
This theorem is referenced by:  bj-nnfalt  34513
  Copyright terms: Public domain W3C validator