Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnflemaa | Structured version Visualization version GIF version |
Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 34891. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnflemaa | ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim 1808 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)) | |
2 | ax-11 2149 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1807 ax-11 2149 |
This theorem is referenced by: bj-nnfalt 34976 |
Copyright terms: Public domain | W3C validator |