Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.12 Structured version   Visualization version   GIF version

Theorem bj-19.12 36774
Description: See 19.12 2327. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2164 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1785 or df-bj-nnf 36737, directly or indirectly. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem bj-19.12
StepHypRef Expression
1 bj-modalbe 36701 . 2 (∃𝑥𝑦𝜑 → ∀𝑦𝑦𝑥𝑦𝜑)
2 excom 2164 . . 3 (∃𝑦𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝑦𝜑)
3 axc7e 2318 . . . 4 (∃𝑦𝑦𝜑𝜑)
43eximi 1836 . . 3 (∃𝑥𝑦𝑦𝜑 → ∃𝑥𝜑)
52, 4sylbi 217 . 2 (∃𝑦𝑥𝑦𝜑 → ∃𝑥𝜑)
61, 5sylg 1824 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-11 2159  ax-12 2179
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  bj-nnflemae  36777  bj-nnflemea  36778
  Copyright terms: Public domain W3C validator