| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.12 | Structured version Visualization version GIF version | ||
| Description: See 19.12 2330. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2167 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1785 or df-bj-nnf 36779, directly or indirectly. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-19.12 | ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-modalbe 36743 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑦∃𝑥∀𝑦𝜑) | |
| 2 | excom 2167 | . . 3 ⊢ (∃𝑦∃𝑥∀𝑦𝜑 ↔ ∃𝑥∃𝑦∀𝑦𝜑) | |
| 3 | axc7e 2321 | . . . 4 ⊢ (∃𝑦∀𝑦𝜑 → 𝜑) | |
| 4 | 3 | eximi 1836 | . . 3 ⊢ (∃𝑥∃𝑦∀𝑦𝜑 → ∃𝑥𝜑) |
| 5 | 2, 4 | sylbi 217 | . 2 ⊢ (∃𝑦∃𝑥∀𝑦𝜑 → ∃𝑥𝜑) |
| 6 | 1, 5 | sylg 1824 | 1 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: bj-nnflemae 36819 bj-nnflemea 36820 |
| Copyright terms: Public domain | W3C validator |