Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.12 Structured version   Visualization version   GIF version

Theorem bj-19.12 34870
Description: See 19.12 2325. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2164 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1788 or df-bj-nnf 34833, directly or indirectly. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem bj-19.12
StepHypRef Expression
1 bj-modalbe 34797 . 2 (∃𝑥𝑦𝜑 → ∀𝑦𝑦𝑥𝑦𝜑)
2 excom 2164 . . 3 (∃𝑦𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝑦𝜑)
3 axc7e 2316 . . . 4 (∃𝑦𝑦𝜑𝜑)
43eximi 1838 . . 3 (∃𝑥𝑦𝑦𝜑 → ∃𝑥𝜑)
52, 4sylbi 216 . 2 (∃𝑦𝑥𝑦𝜑 → ∃𝑥𝜑)
61, 5sylg 1826 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  bj-nnflemae  34873  bj-nnflemea  34874
  Copyright terms: Public domain W3C validator