Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.12 | Structured version Visualization version GIF version |
Description: See 19.12 2321. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2162 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1787 or df-bj-nnf 34906, directly or indirectly. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-19.12 | ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-modalbe 34870 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑦∃𝑥∀𝑦𝜑) | |
2 | excom 2162 | . . 3 ⊢ (∃𝑦∃𝑥∀𝑦𝜑 ↔ ∃𝑥∃𝑦∀𝑦𝜑) | |
3 | axc7e 2312 | . . . 4 ⊢ (∃𝑦∀𝑦𝜑 → 𝜑) | |
4 | 3 | eximi 1837 | . . 3 ⊢ (∃𝑥∃𝑦∀𝑦𝜑 → ∃𝑥𝜑) |
5 | 2, 4 | sylbi 216 | . 2 ⊢ (∃𝑦∃𝑥∀𝑦𝜑 → ∃𝑥𝜑) |
6 | 1, 5 | sylg 1825 | 1 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: bj-nnflemae 34946 bj-nnflemea 34947 |
Copyright terms: Public domain | W3C validator |