Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.12 Structured version   Visualization version   GIF version

Theorem bj-19.12 36744
Description: See 19.12 2326. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2160 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1781 or df-bj-nnf 36707, directly or indirectly. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem bj-19.12
StepHypRef Expression
1 bj-modalbe 36671 . 2 (∃𝑥𝑦𝜑 → ∀𝑦𝑦𝑥𝑦𝜑)
2 excom 2160 . . 3 (∃𝑦𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝑦𝜑)
3 axc7e 2317 . . . 4 (∃𝑦𝑦𝜑𝜑)
43eximi 1832 . . 3 (∃𝑥𝑦𝑦𝜑 → ∃𝑥𝜑)
52, 4sylbi 217 . 2 (∃𝑦𝑥𝑦𝜑 → ∃𝑥𝜑)
61, 5sylg 1820 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  bj-nnflemae  36747  bj-nnflemea  36748
  Copyright terms: Public domain W3C validator