| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnflemee | Structured version Visualization version GIF version | ||
| Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnflemee | ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2162 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
| 2 | exim 1834 | . 2 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑥∃𝑦𝜑 → ∃𝑥𝜑)) | |
| 3 | 1, 2 | biimtrid 242 | 1 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-nnfext 36768 |
| Copyright terms: Public domain | W3C validator |