Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfalt Structured version   Visualization version   GIF version

Theorem bj-nnfalt 34171
 Description: See nfal 2343 and bj-nfalt 34119. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnfalt (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)

Proof of Theorem bj-nnfalt
StepHypRef Expression
1 df-bj-nnf 34132 . . . 4 (Ⅎ'𝑦𝜑 ↔ ((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)))
21albii 1821 . . 3 (∀𝑥Ⅎ'𝑦𝜑 ↔ ∀𝑥((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)))
3 simpl 486 . . . . 5 (((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → (∃𝑦𝜑𝜑))
43alimi 1813 . . . 4 (∀𝑥((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → ∀𝑥(∃𝑦𝜑𝜑))
5 bj-nnflemea 34170 . . . 4 (∀𝑥(∃𝑦𝜑𝜑) → (∃𝑦𝑥𝜑 → ∀𝑥𝜑))
64, 5syl 17 . . 3 (∀𝑥((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → (∃𝑦𝑥𝜑 → ∀𝑥𝜑))
72, 6sylbi 220 . 2 (∀𝑥Ⅎ'𝑦𝜑 → (∃𝑦𝑥𝜑 → ∀𝑥𝜑))
8 simpr 488 . . . . 5 (((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → (𝜑 → ∀𝑦𝜑))
98alimi 1813 . . . 4 (∀𝑥((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → ∀𝑥(𝜑 → ∀𝑦𝜑))
10 bj-nnflemaa 34167 . . . 4 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
119, 10syl 17 . . 3 (∀𝑥((∃𝑦𝜑𝜑) ∧ (𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
122, 11sylbi 220 . 2 (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
13 df-bj-nnf 34132 . 2 (Ⅎ'𝑦𝑥𝜑 ↔ ((∃𝑦𝑥𝜑 → ∀𝑥𝜑) ∧ (∀𝑥𝜑 → ∀𝑦𝑥𝜑)))
147, 12, 13sylanbrc 586 1 (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536  ∃wex 1781  Ⅎ'wnnf 34131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2178 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-bj-nnf 34132 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator