Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbalt Structured version   Visualization version   GIF version

Theorem bj-hbalt 35000
Description: Closed form of hbal 2167. When in main part, prove hbal 2167 and hbald 2168 from it. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-hbalt (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem bj-hbalt
StepHypRef Expression
1 alim 1812 . 2 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
2 ax-11 2154 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2syl6 35 1 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1811  ax-11 2154
This theorem is referenced by:  bj-hbext  35029  bj-nfalt  35030  bj-cbv3ta  35105
  Copyright terms: Public domain W3C validator