|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1224 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1224.1 | ⊢ ¬ (𝜃 ∧ 𝜏 ∧ 𝜂) | 
| Ref | Expression | 
|---|---|
| bnj1224 | ⊢ ((𝜃 ∧ 𝜏) → ¬ 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1224.1 | . . 3 ⊢ ¬ (𝜃 ∧ 𝜏 ∧ 𝜂) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜏) ∧ 𝜂)) | |
| 3 | 1, 2 | mtbi 322 | . 2 ⊢ ¬ ((𝜃 ∧ 𝜏) ∧ 𝜂) | 
| 4 | 3 | imnani 400 | 1 ⊢ ((𝜃 ∧ 𝜏) → ¬ 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: bnj1204 35027 bnj1279 35033 | 
| Copyright terms: Public domain | W3C validator |