![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version |
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
imnani | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mptnan 1764 eueq3 3719 onuninsuci 7860 infn0 9337 sucprcreg 9638 elnotel 9647 alephsucdom 10116 pwfseq 10701 eirr 16237 mreexmrid 17687 dvferm1 26037 dvferm2 26039 dchrisumn0 27579 rpvmasum 27584 cvnsym 32318 ballotlem2 34469 bnj1224 34793 bnj1541 34848 bnj1311 35016 bj-imn3ani 36569 |
Copyright terms: Public domain | W3C validator |