| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version | ||
| Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mptnan 1768 eueq3 3679 onuninsuci 7796 infn0 9227 sucprcreg 9530 elnotel 9539 alephsucdom 10008 pwfseq 10593 eirr 16149 mreexmrid 17580 dvferm1 25865 dvferm2 25867 dchrisumn0 27408 rpvmasum 27413 cvnsym 32192 ballotlem2 34453 bnj1224 34764 bnj1541 34819 bnj1311 34987 bj-imn3ani 36548 |
| Copyright terms: Public domain | W3C validator |