Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version |
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
imnani | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
2 | imnan 401 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mptnan 1770 eueq3 3660 onuninsuci 7758 infn0 9176 sucprcreg 9462 elnotel 9471 alephsucdom 9940 pwfseq 10525 eirr 16013 mreexmrid 17449 dvferm1 25254 dvferm2 25256 dchrisumn0 26774 rpvmasum 26779 cvnsym 30939 ballotlem2 32753 bnj1224 33078 bnj1541 33133 bnj1311 33301 bj-imn3ani 34906 |
Copyright terms: Public domain | W3C validator |