MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 404
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 403 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 234 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  mptnan  1776  eueq3  3624  onuninsuci  7619  sucprcreg  9217  elnotel  9225  alephsucdom  9693  pwfseq  10278  eirr  15766  mreexmrid  17146  dvferm1  24882  dvferm2  24884  dchrisumn0  26402  rpvmasum  26407  cvnsym  30371  ballotlem2  32167  bnj1224  32494  bnj1541  32549  bnj1311  32717  bj-imn3ani  34506
  Copyright terms: Public domain W3C validator