| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version | ||
| Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mptnan 1768 eueq3 3685 onuninsuci 7819 infn0 9258 sucprcreg 9561 elnotel 9570 alephsucdom 10039 pwfseq 10624 eirr 16180 mreexmrid 17611 dvferm1 25896 dvferm2 25898 dchrisumn0 27439 rpvmasum 27444 cvnsym 32226 ballotlem2 34487 bnj1224 34798 bnj1541 34853 bnj1311 35021 bj-imn3ani 36582 |
| Copyright terms: Public domain | W3C validator |