Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version |
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
imnani | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
2 | imnan 400 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mptnan 1769 eueq3 3657 onuninsuci 7755 infn0 9173 sucprcreg 9459 elnotel 9468 alephsucdom 9937 pwfseq 10522 eirr 16014 mreexmrid 17450 dvferm1 25256 dvferm2 25258 dchrisumn0 26776 rpvmasum 26781 cvnsym 30941 ballotlem2 32755 bnj1224 33080 bnj1541 33135 bnj1311 33303 bj-imn3ani 34908 |
Copyright terms: Public domain | W3C validator |