![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version |
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
imnani | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mptnan 1766 eueq3 3733 onuninsuci 7877 infn0 9368 sucprcreg 9670 elnotel 9679 alephsucdom 10148 pwfseq 10733 eirr 16253 mreexmrid 17701 dvferm1 26043 dvferm2 26045 dchrisumn0 27583 rpvmasum 27588 cvnsym 32322 ballotlem2 34453 bnj1224 34777 bnj1541 34832 bnj1311 35000 bj-imn3ani 36553 |
Copyright terms: Public domain | W3C validator |