MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 231 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mptnan  1768  eueq3  3694  onuninsuci  7835  infn0  9312  sucprcreg  9615  elnotel  9624  alephsucdom  10093  pwfseq  10678  eirr  16223  mreexmrid  17655  dvferm1  25941  dvferm2  25943  dchrisumn0  27484  rpvmasum  27489  cvnsym  32271  ballotlem2  34521  bnj1224  34832  bnj1541  34887  bnj1311  35055  bj-imn3ani  36605
  Copyright terms: Public domain W3C validator