| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version | ||
| Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mptnan 1768 eueq3 3679 onuninsuci 7796 infn0 9227 sucprcreg 9530 elnotel 9539 alephsucdom 10008 pwfseq 10593 eirr 16149 mreexmrid 17584 dvferm1 25922 dvferm2 25924 dchrisumn0 27465 rpvmasum 27470 cvnsym 32269 ballotlem2 34473 bnj1224 34784 bnj1541 34839 bnj1311 35007 bj-imn3ani 36568 |
| Copyright terms: Public domain | W3C validator |