MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 231 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mptnan  1768  eueq3  3682  onuninsuci  7816  infn0  9251  sucprcreg  9554  elnotel  9563  alephsucdom  10032  pwfseq  10617  eirr  16173  mreexmrid  17604  dvferm1  25889  dvferm2  25891  dchrisumn0  27432  rpvmasum  27437  cvnsym  32219  ballotlem2  34480  bnj1224  34791  bnj1541  34846  bnj1311  35014  bj-imn3ani  36575
  Copyright terms: Public domain W3C validator