| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version | ||
| Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mptnan 1768 eueq3 3671 onuninsuci 7773 infn0 9191 sucprcreg 9496 elnotel 9506 alephsucdom 9973 pwfseq 10558 eirr 16114 mreexmrid 17549 dvferm1 25887 dvferm2 25889 dchrisumn0 27430 rpvmasum 27435 cvnsym 32234 ballotlem2 34457 bnj1224 34768 bnj1541 34823 bnj1311 34991 bj-imn3ani 36565 |
| Copyright terms: Public domain | W3C validator |