Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version |
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
imnani | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mptnan 1774 eueq3 3649 onuninsuci 7675 sucprcreg 9321 elnotel 9329 alephsucdom 9819 pwfseq 10404 eirr 15895 mreexmrid 17333 dvferm1 25130 dvferm2 25132 dchrisumn0 26650 rpvmasum 26655 cvnsym 30631 ballotlem2 32434 bnj1224 32760 bnj1541 32815 bnj1311 32983 bj-imn3ani 34748 |
Copyright terms: Public domain | W3C validator |