| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnani | Structured version Visualization version GIF version | ||
| Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 2 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mptnan 1769 eueq3 3665 onuninsuci 7770 infn0 9186 sucprcreg 9490 elnotel 9500 alephsucdom 9970 pwfseq 10555 eirr 16114 mreexmrid 17549 dvferm1 25916 dvferm2 25918 dchrisumn0 27459 rpvmasum 27464 cvnsym 32270 ballotlem2 34502 bnj1224 34813 bnj1541 34868 bnj1311 35036 bj-imn3ani 36631 |
| Copyright terms: Public domain | W3C validator |