MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 402
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 401 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 230 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  mptnan  1771  eueq3  3708  onuninsuci  7829  infn0  9307  sucprcreg  9596  elnotel  9605  alephsucdom  10074  pwfseq  10659  eirr  16148  mreexmrid  17587  dvferm1  25502  dvferm2  25504  dchrisumn0  27024  rpvmasum  27029  cvnsym  31574  ballotlem2  33518  bnj1224  33843  bnj1541  33898  bnj1311  34066  bj-imn3ani  35513
  Copyright terms: Public domain W3C validator