MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 231 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mptnan  1766  eueq3  3733  onuninsuci  7877  infn0  9368  sucprcreg  9670  elnotel  9679  alephsucdom  10148  pwfseq  10733  eirr  16253  mreexmrid  17701  dvferm1  26043  dvferm2  26045  dchrisumn0  27583  rpvmasum  27588  cvnsym  32322  ballotlem2  34453  bnj1224  34777  bnj1541  34832  bnj1311  35000  bj-imn3ani  36553
  Copyright terms: Public domain W3C validator