MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 231 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mptnan  1768  eueq3  3685  onuninsuci  7819  infn0  9258  sucprcreg  9561  elnotel  9570  alephsucdom  10039  pwfseq  10624  eirr  16180  mreexmrid  17611  dvferm1  25896  dvferm2  25898  dchrisumn0  27439  rpvmasum  27444  cvnsym  32226  ballotlem2  34487  bnj1224  34798  bnj1541  34853  bnj1311  35021  bj-imn3ani  36582
  Copyright terms: Public domain W3C validator