MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 231 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mptnan  1768  eueq3  3679  onuninsuci  7796  infn0  9227  sucprcreg  9530  elnotel  9539  alephsucdom  10008  pwfseq  10593  eirr  16149  mreexmrid  17580  dvferm1  25865  dvferm2  25867  dchrisumn0  27408  rpvmasum  27413  cvnsym  32192  ballotlem2  34453  bnj1224  34764  bnj1541  34819  bnj1311  34987  bj-imn3ani  36548
  Copyright terms: Public domain W3C validator