MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Structured version   Visualization version   GIF version

Theorem imnani 400
Description: Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 230 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  mptnan  1774  eueq3  3649  onuninsuci  7675  sucprcreg  9321  elnotel  9329  alephsucdom  9819  pwfseq  10404  eirr  15895  mreexmrid  17333  dvferm1  25130  dvferm2  25132  dchrisumn0  26650  rpvmasum  26655  cvnsym  30631  ballotlem2  32434  bnj1224  32760  bnj1541  32815  bnj1311  32983  bj-imn3ani  34748
  Copyright terms: Public domain W3C validator