Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1204 Structured version   Visualization version   GIF version

Theorem bnj1204 32277
Description: Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1204.1 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
bnj1204 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem bnj1204
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → 𝑅 FrSe 𝐴)
2 ssrab2 4054 . . . . . . 7 {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴
32a1i 11 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴)
4 simp3 1133 . . . . . . 7 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥𝐴 ¬ 𝜑)
5 rabn0 4337 . . . . . . 7 ({𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ∃𝑥𝐴 ¬ 𝜑)
64, 5sylibr 236 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅)
7 nfrab1 3383 . . . . . . . 8 𝑥{𝑥𝐴 ∣ ¬ 𝜑}
87nfcrii 2968 . . . . . . 7 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ∀𝑥 𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑})
98bnj1228 32276 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
101, 3, 6, 9syl3anc 1366 . . . . 5 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
11 biid 263 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥))
12 nfv 1909 . . . . . . 7 𝑥 𝑅 FrSe 𝐴
13 nfra1 3217 . . . . . . 7 𝑥𝑥𝐴 (𝜓𝜑)
14 nfre1 3304 . . . . . . 7 𝑥𝑥𝐴 ¬ 𝜑
1512, 13, 14nf3an 1896 . . . . . 6 𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑)
1615nf5ri 2188 . . . . 5 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∀𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑))
1710, 11, 16bnj1521 32116 . . . 4 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥))
18 eqid 2819 . . . . . 6 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥𝐴 ∣ ¬ 𝜑}
1918, 11bnj1212 32064 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑥𝐴)
20 nfra1 3217 . . . . . . . 8 𝑦𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥
21 simp3 1133 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
2221bnj1211 32062 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥))
23 con2b 362 . . . . . . . . . . . . . . 15 ((𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2423albii 1814 . . . . . . . . . . . . . 14 (∀𝑦(𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2522, 24sylib 220 . . . . . . . . . . . . 13 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
26 simp2 1132 . . . . . . . . . . . . 13 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦𝑅𝑥)
27 sp 2175 . . . . . . . . . . . . 13 (∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}) → (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2825, 26, 27sylc 65 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑})
29 simp1 1131 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦𝐴)
30 nfcv 2975 . . . . . . . . . . . . . . . . . 18 𝑥𝐴
3130elrabsf 3814 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑦𝐴[𝑦 / 𝑥] ¬ 𝜑))
32 vex 3496 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
33 sbcng 3817 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
3534anbi2i 624 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3631, 35bitri 277 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3736notbii 322 . . . . . . . . . . . . . . 15 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ ¬ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
38 imnan 402 . . . . . . . . . . . . . . 15 ((𝑦𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑) ↔ ¬ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3937, 38sylbb2 240 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → (𝑦𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑))
4039imp 409 . . . . . . . . . . . . 13 ((¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ 𝑦𝐴) → ¬ ¬ [𝑦 / 𝑥]𝜑)
4140notnotrd 135 . . . . . . . . . . . 12 ((¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ 𝑦𝐴) → [𝑦 / 𝑥]𝜑)
4228, 29, 41syl2anc 586 . . . . . . . . . . 11 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑)
43423expa 1113 . . . . . . . . . 10 (((𝑦𝐴𝑦𝑅𝑥) ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑)
4443expcom 416 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ((𝑦𝐴𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑))
4544expd 418 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
4620, 45ralrimi 3214 . . . . . . 7 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
47 bnj1204.1 . . . . . . 7 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
4846, 47sylibr 236 . . . . . 6 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥𝜓)
49483ad2ant3 1130 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜓)
50 simp12 1199 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑥𝐴 (𝜓𝜑))
51 simp3 1133 . . . . . . 7 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 (𝜓𝜑))
5251bnj1211 32062 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥(𝑥𝐴 → (𝜓𝜑)))
53 simp1 1131 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝑥𝐴)
54 simp2 1132 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝜓)
55 sp 2175 . . . . . 6 (∀𝑥(𝑥𝐴 → (𝜓𝜑)) → (𝑥𝐴 → (𝜓𝜑)))
5652, 53, 54, 55syl3c 66 . . . . 5 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝜑)
5719, 49, 50, 56syl3anc 1366 . . . 4 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜑)
58 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑥𝐴 ∧ ¬ 𝜑))
5958simprbi 499 . . . . 5 (𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝜑)
60593ad2ant2 1129 . . . 4 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝜑)
6117, 57, 60bnj1304 32084 . . 3 ¬ (𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑)
6261bnj1224 32066 . 2 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ¬ ∃𝑥𝐴 ¬ 𝜑)
63 dfral2 3235 . 2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
6462, 63sylibr 236 1 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082  wal 1529  wcel 2108  wne 3014  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  [wsbc 3770  wss 3934  c0 4289   class class class wbr 5057   FrSe w-bnj15 31955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-reg 9048  ax-inf2 9096
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-1o 8094  df-bnj17 31950  df-bnj14 31952  df-bnj13 31954  df-bnj15 31956  df-bnj18 31958  df-bnj19 31960
This theorem is referenced by:  bnj1417  32306
  Copyright terms: Public domain W3C validator