Step | Hyp | Ref
| Expression |
1 | | simp1 1133 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → 𝑅 FrSe 𝐴) |
2 | | ssrab2 3986 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 |
3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴) |
4 | | simp3 1135 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
5 | | rabn0 4284 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
6 | 4, 5 | sylibr 237 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅) |
7 | | nfrab1 3302 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
8 | 7 | nfcrii 2911 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ∀𝑥 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
9 | 8 | bnj1228 32524 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) |
10 | 1, 3, 6, 9 | syl3anc 1368 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → ∃𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) |
11 | | biid 264 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)) |
12 | | nfv 1915 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑅 FrSe 𝐴 |
13 | | nfra1 3147 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) |
14 | | nfre1 3230 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 ¬ 𝜑 |
15 | 12, 13, 14 | nf3an 1902 |
. . . . . 6
⊢
Ⅎ𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
16 | 15 | nf5ri 2193 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → ∀𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑)) |
17 | 10, 11, 16 | bnj1521 32364 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) → ∃𝑥((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)) |
18 | | eqid 2758 |
. . . . . 6
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
19 | 18, 11 | bnj1212 32312 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑥 ∈ 𝐴) |
20 | | nfra1 3147 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 |
21 | | simp3 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) |
22 | 21 | bnj1211 32310 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥)) |
23 | | con2b 363 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
24 | 23 | albii 1821 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
25 | 22, 24 | sylib 221 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
26 | | simp2 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦𝑅𝑥) |
27 | | sp 2180 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) → (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
28 | 25, 26, 27 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
29 | | simp1 1133 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦 ∈ 𝐴) |
30 | | nfcv 2919 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝐴 |
31 | 30 | elrabsf 3743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥] ¬ 𝜑)) |
32 | | vex 3413 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑦 ∈ V |
33 | | sbcng 3745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
35 | 34 | anbi2i 625 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑)) |
36 | 31, 35 | bitri 278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑦 ∈ 𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑)) |
37 | 36 | notbii 323 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ ¬ (𝑦 ∈ 𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑)) |
38 | | imnan 403 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑) ↔ ¬ (𝑦 ∈ 𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑)) |
39 | 37, 38 | sylbb2 241 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → (𝑦 ∈ 𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑)) |
40 | 39 | imp 410 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ 𝑦 ∈ 𝐴) → ¬ ¬ [𝑦 / 𝑥]𝜑) |
41 | 40 | notnotrd 135 |
. . . . . . . . . . . 12
⊢ ((¬
𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ 𝑦 ∈ 𝐴) → [𝑦 / 𝑥]𝜑) |
42 | 28, 29, 41 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑) |
43 | 42 | 3expa 1115 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑) |
44 | 43 | expcom 417 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑)) |
45 | 44 | expd 419 |
. . . . . . . 8
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → (𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑))) |
46 | 20, 45 | ralrimi 3144 |
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) |
47 | | bnj1204.1 |
. . . . . . 7
⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) |
48 | 46, 47 | sylibr 237 |
. . . . . 6
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → 𝜓) |
49 | 48 | 3ad2ant3 1132 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜓) |
50 | | simp12 1201 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
51 | | simp3 1135 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
52 | 51 | bnj1211 32310 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) |
53 | | simp1 1133 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → 𝑥 ∈ 𝐴) |
54 | | simp2 1134 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → 𝜓) |
55 | | sp 2180 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝜑)) → (𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) |
56 | 52, 53, 54, 55 | syl3c 66 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → 𝜑) |
57 | 19, 49, 50, 56 | syl3anc 1368 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜑) |
58 | | rabid 3296 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) |
59 | 58 | simprbi 500 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ¬ 𝜑) |
60 | 59 | 3ad2ant2 1131 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝜑) |
61 | 17, 57, 60 | bnj1304 32332 |
. . 3
⊢ ¬
(𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
62 | 61 | bnj1224 32314 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
63 | | dfral2 3164 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
64 | 62, 63 | sylibr 237 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) |