Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1230 Structured version   Visualization version   GIF version

Theorem bnj1230 32682
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1230.1 𝐵 = {𝑥𝐴𝜑}
Assertion
Ref Expression
bnj1230 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1230
StepHypRef Expression
1 bnj1230.1 . . 3 𝐵 = {𝑥𝐴𝜑}
2 nfrab1 3310 . . 3 𝑥{𝑥𝐴𝜑}
31, 2nfcxfr 2904 . 2 𝑥𝐵
43nfcrii 2898 1 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2108  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072
This theorem is referenced by:  bnj1312  32938
  Copyright terms: Public domain W3C validator