Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1230 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1230.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
Ref | Expression |
---|---|
bnj1230 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1230.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | nfrab1 3421 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
3 | 1, 2 | nfcxfr 2903 | . 2 ⊢ Ⅎ𝑥𝐵 |
4 | 3 | nfcrii 2897 | 1 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2105 {crab 3404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 |
This theorem is referenced by: bnj1312 33143 |
Copyright terms: Public domain | W3C validator |