![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtbir 322 vn0 4337 vnex 5313 opthwiener 5513 epelg 5580 harndom 9553 alephprc 10090 unialeph 10092 ndvdsi 16351 nprmi 16622 dec2dvds 16992 dec5dvds2 16994 mreexmrid 17583 sinhalfpilem 25964 ppi2i 26662 axlowdimlem13 28201 ex-mod 29691 measvuni 33200 ballotlem2 33475 sgnmulsgp 33537 bnj1224 33800 bnj1541 33855 bnj1311 34023 dfon2lem7 34749 onsucsuccmpi 35316 bj-imn3ani 35453 sbn1ALT 35725 bj-0nelmpt 35985 bj-pinftynminfty 36096 poimirlem30 36506 clsk1indlem4 42780 alimp-no-surprise 47781 |
Copyright terms: Public domain | W3C validator |