![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: mtbir 323 vn0 4368 vnex 5332 opthwiener 5533 epelg 5600 harndom 9631 alephprc 10168 unialeph 10170 ndvdsi 16460 nprmi 16736 dec2dvds 17110 dec5dvds2 17112 mreexmrid 17701 sinhalfpilem 26523 ppi2i 27230 axlowdimlem13 28987 ex-mod 30481 measvuni 34178 ballotlem2 34453 sgnmulsgp 34515 bnj1224 34777 bnj1541 34832 bnj1311 35000 dfon2lem7 35753 onsucsuccmpi 36409 bj-imn3ani 36553 sbn1ALT 36824 bj-0nelmpt 37082 bj-pinftynminfty 37193 poimirlem30 37610 clsk1indlem4 44006 alimp-no-surprise 48875 |
Copyright terms: Public domain | W3C validator |