Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 231 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 200 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: mtbir 327 vn0 4238 vnex 5185 opthwiener 5374 epelg 5437 harndom 9060 alephprc 9560 unialeph 9562 ndvdsi 15814 nprmi 16086 dec2dvds 16455 dec5dvds2 16457 mreexmrid 16973 sinhalfpilem 25156 ppi2i 25854 axlowdimlem13 26848 ex-mod 28334 measvuni 31702 ballotlem2 31975 sgnmulsgp 32037 bnj1224 32302 bnj1541 32357 bnj1311 32525 dfon2lem7 33282 onsucsuccmpi 34182 bj-imn3ani 34316 bj-0nelmpt 34812 bj-pinftynminfty 34923 poimirlem30 35368 clsk1indlem4 41121 alimp-no-surprise 45701 |
Copyright terms: Public domain | W3C validator |