| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtbir 323 vnex 5256 opthwiener 5459 epelg 5522 harndom 9457 alephprc 9999 unialeph 10001 ndvdsi 16327 nprmi 16604 dec2dvds 16979 dec5dvds2 16981 mreexmrid 17553 sinhalfpilem 26402 ppi2i 27109 axlowdimlem13 28936 ex-mod 30433 sgnmulsgp 32833 measvuni 34250 ballotlem2 34525 bnj1224 34836 bnj1541 34891 bnj1311 35059 dfon2lem7 35854 onsucsuccmpi 36510 bj-imn3ani 36654 sbn1ALT 36925 bj-0nelmpt 37183 bj-pinftynminfty 37294 poimirlem30 37713 clsk1indlem4 44164 tannpoly 47017 alimp-no-surprise 49909 |
| Copyright terms: Public domain | W3C validator |