Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtbir 322 vn0 4277 vnex 5241 opthwiener 5430 epelg 5495 harndom 9282 alephprc 9839 unialeph 9841 ndvdsi 16102 nprmi 16375 dec2dvds 16745 dec5dvds2 16747 mreexmrid 17333 sinhalfpilem 25601 ppi2i 26299 axlowdimlem13 27303 ex-mod 28792 measvuni 32161 ballotlem2 32434 sgnmulsgp 32496 bnj1224 32760 bnj1541 32815 bnj1311 32983 dfon2lem7 33744 onsucsuccmpi 34611 bj-imn3ani 34748 sbn1ALT 35021 bj-0nelmpt 35266 bj-pinftynminfty 35377 poimirlem30 35786 clsk1indlem4 41607 alimp-no-surprise 46437 |
Copyright terms: Public domain | W3C validator |