| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtbir 323 vn0 4295 vnex 5252 opthwiener 5454 epelg 5517 harndom 9448 alephprc 9990 unialeph 9992 ndvdsi 16323 nprmi 16600 dec2dvds 16975 dec5dvds2 16977 mreexmrid 17549 sinhalfpilem 26400 ppi2i 27107 axlowdimlem13 28933 ex-mod 30427 sgnmulsgp 32824 measvuni 34225 ballotlem2 34500 bnj1224 34811 bnj1541 34866 bnj1311 35034 dfon2lem7 35829 onsucsuccmpi 36483 bj-imn3ani 36627 sbn1ALT 36898 bj-0nelmpt 37156 bj-pinftynminfty 37267 poimirlem30 37696 clsk1indlem4 44083 tannpoly 46927 alimp-no-surprise 49819 |
| Copyright terms: Public domain | W3C validator |