| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtbir 323 vn0 4308 vnex 5269 opthwiener 5474 epelg 5539 harndom 9515 alephprc 10052 unialeph 10054 ndvdsi 16382 nprmi 16659 dec2dvds 17034 dec5dvds2 17036 mreexmrid 17604 sinhalfpilem 26372 ppi2i 27079 axlowdimlem13 28881 ex-mod 30378 sgnmulsgp 32768 measvuni 34204 ballotlem2 34480 bnj1224 34791 bnj1541 34846 bnj1311 35014 dfon2lem7 35777 onsucsuccmpi 36431 bj-imn3ani 36575 sbn1ALT 36846 bj-0nelmpt 37104 bj-pinftynminfty 37215 poimirlem30 37644 clsk1indlem4 44033 alimp-no-surprise 49767 |
| Copyright terms: Public domain | W3C validator |