| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtbir 323 vn0 4298 vnex 5256 opthwiener 5461 epelg 5524 harndom 9473 alephprc 10012 unialeph 10014 ndvdsi 16341 nprmi 16618 dec2dvds 16993 dec5dvds2 16995 mreexmrid 17567 sinhalfpilem 26388 ppi2i 27095 axlowdimlem13 28917 ex-mod 30411 sgnmulsgp 32801 measvuni 34183 ballotlem2 34459 bnj1224 34770 bnj1541 34825 bnj1311 34993 dfon2lem7 35765 onsucsuccmpi 36419 bj-imn3ani 36563 sbn1ALT 36834 bj-0nelmpt 37092 bj-pinftynminfty 37203 poimirlem30 37632 clsk1indlem4 44020 tannpoly 46878 alimp-no-surprise 49770 |
| Copyright terms: Public domain | W3C validator |