![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtbir 323 vn0 4339 vnex 5315 opthwiener 5515 epelg 5582 harndom 9557 alephprc 10094 unialeph 10096 ndvdsi 16355 nprmi 16626 dec2dvds 16996 dec5dvds2 16998 mreexmrid 17587 sinhalfpilem 25973 ppi2i 26673 axlowdimlem13 28212 ex-mod 29702 measvuni 33212 ballotlem2 33487 sgnmulsgp 33549 bnj1224 33812 bnj1541 33867 bnj1311 34035 dfon2lem7 34761 onsucsuccmpi 35328 bj-imn3ani 35465 sbn1ALT 35737 bj-0nelmpt 35997 bj-pinftynminfty 36108 poimirlem30 36518 clsk1indlem4 42795 alimp-no-surprise 47828 |
Copyright terms: Public domain | W3C validator |