| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 197 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtbir 323 vn0 4325 vnex 5289 opthwiener 5494 epelg 5559 harndom 9581 alephprc 10118 unialeph 10120 ndvdsi 16436 nprmi 16713 dec2dvds 17088 dec5dvds2 17090 mreexmrid 17660 sinhalfpilem 26429 ppi2i 27136 axlowdimlem13 28938 ex-mod 30435 sgnmulsgp 32827 measvuni 34250 ballotlem2 34526 bnj1224 34837 bnj1541 34892 bnj1311 35060 dfon2lem7 35812 onsucsuccmpi 36466 bj-imn3ani 36610 sbn1ALT 36881 bj-0nelmpt 37139 bj-pinftynminfty 37250 poimirlem30 37679 clsk1indlem4 44035 alimp-no-surprise 49612 |
| Copyright terms: Public domain | W3C validator |