MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtbi Structured version   Visualization version   GIF version

Theorem mtbi 322
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1 ¬ 𝜑
mtbi.2 (𝜑𝜓)
Assertion
Ref Expression
mtbi ¬ 𝜓

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2 ¬ 𝜑
2 mtbi.2 . . 3 (𝜑𝜓)
32biimpri 227 . 2 (𝜓𝜑)
41, 3mto 196 1 ¬ 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mtbir  323  vn0  4339  vnex  5315  opthwiener  5515  epelg  5582  harndom  9557  alephprc  10094  unialeph  10096  ndvdsi  16355  nprmi  16626  dec2dvds  16996  dec5dvds2  16998  mreexmrid  17587  sinhalfpilem  25973  ppi2i  26673  axlowdimlem13  28212  ex-mod  29702  measvuni  33212  ballotlem2  33487  sgnmulsgp  33549  bnj1224  33812  bnj1541  33867  bnj1311  34035  dfon2lem7  34761  onsucsuccmpi  35328  bj-imn3ani  35465  sbn1ALT  35737  bj-0nelmpt  35997  bj-pinftynminfty  36108  poimirlem30  36518  clsk1indlem4  42795  alimp-no-surprise  47828
  Copyright terms: Public domain W3C validator