Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj422 Structured version   Visualization version   GIF version

Theorem bnj422 32213
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj422 ((𝜑𝜓𝜒𝜃) ↔ (𝜒𝜃𝜑𝜓))

Proof of Theorem bnj422
StepHypRef Expression
1 bnj345 32212 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜃𝜑𝜓𝜒))
2 bnj345 32212 . 2 ((𝜃𝜑𝜓𝜒) ↔ (𝜒𝜃𝜑𝜓))
31, 2bitri 278 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜒𝜃𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209  w-bnj17 32184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-bnj17 32185
This theorem is referenced by:  bnj432  32214  bnj535  32390  bnj558  32402
  Copyright terms: Public domain W3C validator