Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj422 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj422 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj345 32212 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | bnj345 32212 | . 2 ⊢ ((𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) | |
3 | 1, 2 | bitri 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w-bnj17 32184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 df-bnj17 32185 |
This theorem is referenced by: bnj432 32214 bnj535 32390 bnj558 32402 |
Copyright terms: Public domain | W3C validator |