| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version | ||
| Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | w-bnj17 34676 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| 6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj248 34690 bnj250 34691 bnj258 34698 bnj268 34699 bnj291 34701 bnj312 34702 bnj446 34707 bnj645 34740 bnj658 34741 bnj887 34755 bnj919 34757 bnj945 34763 bnj951 34765 bnj982 34768 bnj1019 34769 bnj518 34876 bnj571 34896 bnj594 34902 bnj916 34923 bnj966 34934 bnj967 34935 bnj1006 34950 bnj1018g 34953 bnj1018 34954 bnj1040 34962 bnj1174 34993 bnj1175 34994 bnj1311 35014 |
| Copyright terms: Public domain | W3C validator |