Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 34660
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 34659 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1086 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 206 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  34673  bnj250  34674  bnj258  34681  bnj268  34682  bnj291  34684  bnj312  34685  bnj446  34690  bnj645  34723  bnj658  34724  bnj887  34738  bnj919  34740  bnj945  34746  bnj951  34748  bnj982  34751  bnj1019  34752  bnj518  34859  bnj571  34879  bnj594  34885  bnj916  34906  bnj966  34917  bnj967  34918  bnj1006  34933  bnj1018g  34936  bnj1018  34937  bnj1040  34945  bnj1174  34976  bnj1175  34977  bnj1311  34997
  Copyright terms: Public domain W3C validator