Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 34677
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 34676 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1086 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 206 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  34690  bnj250  34691  bnj258  34698  bnj268  34699  bnj291  34701  bnj312  34702  bnj446  34707  bnj645  34740  bnj658  34741  bnj887  34755  bnj919  34757  bnj945  34763  bnj951  34765  bnj982  34768  bnj1019  34769  bnj518  34876  bnj571  34896  bnj594  34902  bnj916  34923  bnj966  34934  bnj967  34935  bnj1006  34950  bnj1018g  34953  bnj1018  34954  bnj1040  34962  bnj1174  34993  bnj1175  34994  bnj1311  35014
  Copyright terms: Public domain W3C validator