![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version |
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | wth | . . 3 wff 𝜃 | |
5 | 1, 2, 3, 4 | w-bnj17 34678 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff setvar class |
This definition is referenced by: bnj248 34692 bnj250 34693 bnj258 34700 bnj268 34701 bnj291 34703 bnj312 34704 bnj446 34709 bnj645 34742 bnj658 34743 bnj887 34757 bnj919 34759 bnj945 34765 bnj951 34767 bnj982 34770 bnj1019 34771 bnj518 34878 bnj571 34898 bnj594 34904 bnj916 34925 bnj966 34936 bnj967 34937 bnj1006 34952 bnj1018g 34955 bnj1018 34956 bnj1040 34964 bnj1174 34995 bnj1175 34996 bnj1311 35016 |
Copyright terms: Public domain | W3C validator |