| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version | ||
| Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | w-bnj17 34683 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| 6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj248 34697 bnj250 34698 bnj258 34705 bnj268 34706 bnj291 34708 bnj312 34709 bnj446 34714 bnj645 34747 bnj658 34748 bnj887 34762 bnj919 34764 bnj945 34770 bnj951 34772 bnj982 34775 bnj1019 34776 bnj518 34883 bnj571 34903 bnj594 34909 bnj916 34930 bnj966 34941 bnj967 34942 bnj1006 34957 bnj1018g 34960 bnj1018 34961 bnj1040 34969 bnj1174 35000 bnj1175 35001 bnj1311 35021 |
| Copyright terms: Public domain | W3C validator |