![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version |
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | wth | . . 3 wff 𝜃 | |
5 | 1, 2, 3, 4 | w-bnj17 33697 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
6 | 1, 2, 3 | w3a 1088 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
7 | 6, 4 | wa 397 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
8 | 5, 7 | wb 205 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff setvar class |
This definition is referenced by: bnj248 33711 bnj250 33712 bnj258 33719 bnj268 33720 bnj291 33722 bnj312 33723 bnj446 33728 bnj645 33761 bnj658 33762 bnj887 33776 bnj919 33778 bnj945 33784 bnj951 33786 bnj982 33789 bnj1019 33790 bnj518 33897 bnj571 33917 bnj594 33923 bnj916 33944 bnj966 33955 bnj967 33956 bnj1006 33971 bnj1018g 33974 bnj1018 33975 bnj1040 33983 bnj1174 34014 bnj1175 34015 bnj1311 34035 |
Copyright terms: Public domain | W3C validator |