Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 31634
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 31633 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1068 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 387 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 198 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  31647  bnj250  31648  bnj258  31655  bnj268  31656  bnj291  31658  bnj312  31659  bnj446  31664  bnj645  31698  bnj658  31699  bnj887  31713  bnj919  31715  bnj945  31722  bnj951  31724  bnj982  31727  bnj1019  31728  bnj518  31834  bnj571  31854  bnj594  31860  bnj916  31881  bnj966  31892  bnj967  31893  bnj1006  31907  bnj1018  31910  bnj1040  31918  bnj1174  31949  bnj1175  31950  bnj1311  31970
  Copyright terms: Public domain W3C validator