Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 33698
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 33697 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1088 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 397 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 205 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  33711  bnj250  33712  bnj258  33719  bnj268  33720  bnj291  33722  bnj312  33723  bnj446  33728  bnj645  33761  bnj658  33762  bnj887  33776  bnj919  33778  bnj945  33784  bnj951  33786  bnj982  33789  bnj1019  33790  bnj518  33897  bnj571  33917  bnj594  33923  bnj916  33944  bnj966  33955  bnj967  33956  bnj1006  33971  bnj1018g  33974  bnj1018  33975  bnj1040  33983  bnj1174  34014  bnj1175  34015  bnj1311  34035
  Copyright terms: Public domain W3C validator