| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version | ||
| Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | w-bnj17 34663 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| 6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj248 34677 bnj250 34678 bnj258 34685 bnj268 34686 bnj291 34688 bnj312 34689 bnj446 34694 bnj645 34727 bnj658 34728 bnj887 34742 bnj919 34744 bnj945 34750 bnj951 34752 bnj982 34755 bnj1019 34756 bnj518 34863 bnj571 34883 bnj594 34889 bnj916 34910 bnj966 34921 bnj967 34922 bnj1006 34937 bnj1018g 34940 bnj1018 34941 bnj1040 34949 bnj1174 34980 bnj1175 34981 bnj1311 35001 |
| Copyright terms: Public domain | W3C validator |