Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 32566
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 32565 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1085 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 205 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  32579  bnj250  32580  bnj258  32587  bnj268  32588  bnj291  32590  bnj312  32591  bnj446  32596  bnj645  32630  bnj658  32631  bnj887  32645  bnj919  32647  bnj945  32653  bnj951  32655  bnj982  32658  bnj1019  32659  bnj518  32766  bnj571  32786  bnj594  32792  bnj916  32813  bnj966  32824  bnj967  32825  bnj1006  32840  bnj1018g  32843  bnj1018  32844  bnj1040  32852  bnj1174  32883  bnj1175  32884  bnj1311  32904
  Copyright terms: Public domain W3C validator