Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version |
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | wth | . . 3 wff 𝜃 | |
5 | 1, 2, 3, 4 | w-bnj17 32674 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
7 | 6, 4 | wa 396 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
8 | 5, 7 | wb 205 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff setvar class |
This definition is referenced by: bnj248 32688 bnj250 32689 bnj258 32696 bnj268 32697 bnj291 32699 bnj312 32700 bnj446 32705 bnj645 32739 bnj658 32740 bnj887 32754 bnj919 32756 bnj945 32762 bnj951 32764 bnj982 32767 bnj1019 32768 bnj518 32875 bnj571 32895 bnj594 32901 bnj916 32922 bnj966 32933 bnj967 32934 bnj1006 32949 bnj1018g 32952 bnj1018 32953 bnj1040 32961 bnj1174 32992 bnj1175 32993 bnj1311 33013 |
Copyright terms: Public domain | W3C validator |