![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version |
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | wth | . . 3 wff 𝜃 | |
5 | 1, 2, 3, 4 | w-bnj17 33766 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
6 | 1, 2, 3 | w3a 1087 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
7 | 6, 4 | wa 396 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
8 | 5, 7 | wb 205 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff setvar class |
This definition is referenced by: bnj248 33780 bnj250 33781 bnj258 33788 bnj268 33789 bnj291 33791 bnj312 33792 bnj446 33797 bnj645 33830 bnj658 33831 bnj887 33845 bnj919 33847 bnj945 33853 bnj951 33855 bnj982 33858 bnj1019 33859 bnj518 33966 bnj571 33986 bnj594 33992 bnj916 34013 bnj966 34024 bnj967 34025 bnj1006 34040 bnj1018g 34043 bnj1018 34044 bnj1040 34052 bnj1174 34083 bnj1175 34084 bnj1311 34104 |
Copyright terms: Public domain | W3C validator |