| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version | ||
| Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | w-bnj17 34669 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| 6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj248 34683 bnj250 34684 bnj258 34691 bnj268 34692 bnj291 34694 bnj312 34695 bnj446 34700 bnj645 34733 bnj658 34734 bnj887 34748 bnj919 34750 bnj945 34756 bnj951 34758 bnj982 34761 bnj1019 34762 bnj518 34869 bnj571 34889 bnj594 34895 bnj916 34916 bnj966 34927 bnj967 34928 bnj1006 34943 bnj1018g 34946 bnj1018 34947 bnj1040 34955 bnj1174 34986 bnj1175 34987 bnj1311 35007 |
| Copyright terms: Public domain | W3C validator |