Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 34664
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 34663 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1086 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 206 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  34677  bnj250  34678  bnj258  34685  bnj268  34686  bnj291  34688  bnj312  34689  bnj446  34694  bnj645  34727  bnj658  34728  bnj887  34742  bnj919  34744  bnj945  34750  bnj951  34752  bnj982  34755  bnj1019  34756  bnj518  34863  bnj571  34883  bnj594  34889  bnj916  34910  bnj966  34921  bnj967  34922  bnj1006  34937  bnj1018g  34940  bnj1018  34941  bnj1040  34949  bnj1174  34980  bnj1175  34981  bnj1311  35001
  Copyright terms: Public domain W3C validator