| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version | ||
| Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | w-bnj17 34659 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| 6 | 1, 2, 3 | w3a 1086 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj248 34673 bnj250 34674 bnj258 34681 bnj268 34682 bnj291 34684 bnj312 34685 bnj446 34690 bnj645 34723 bnj658 34724 bnj887 34738 bnj919 34740 bnj945 34746 bnj951 34748 bnj982 34751 bnj1019 34752 bnj518 34859 bnj571 34879 bnj594 34885 bnj916 34906 bnj966 34917 bnj967 34918 bnj1006 34933 bnj1018g 34936 bnj1018 34937 bnj1040 34945 bnj1174 34976 bnj1175 34977 bnj1311 34997 |
| Copyright terms: Public domain | W3C validator |