Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 34699
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 34698 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1086 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 206 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  34712  bnj250  34713  bnj258  34720  bnj268  34721  bnj291  34723  bnj312  34724  bnj446  34729  bnj645  34762  bnj658  34763  bnj887  34777  bnj919  34779  bnj945  34785  bnj951  34787  bnj982  34790  bnj1019  34791  bnj518  34898  bnj571  34918  bnj594  34924  bnj916  34945  bnj966  34956  bnj967  34957  bnj1006  34972  bnj1018g  34975  bnj1018  34976  bnj1040  34984  bnj1174  35015  bnj1175  35016  bnj1311  35036
  Copyright terms: Public domain W3C validator