Proof of Theorem bnj535
Step | Hyp | Ref
| Expression |
1 | | bnj422 32594 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏)) |
2 | | bnj251 32581 |
. . 3
⊢ ((𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏)))) |
3 | 1, 2 | bitri 274 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏)))) |
4 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝑓‘𝑝) ∈ V |
5 | | bnj535.1 |
. . . . . . . . . 10
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
6 | | bnj535.2 |
. . . . . . . . . 10
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
7 | | bnj535.4 |
. . . . . . . . . 10
⊢ (𝜏 ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
8 | 5, 6, 7 | bnj518 32766 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
9 | | iunexg 7779 |
. . . . . . . . 9
⊢ (((𝑓‘𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
10 | 4, 8, 9 | sylancr 586 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∪
𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
11 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑚 ∈ V |
12 | 11 | bnj519 32615 |
. . . . . . . 8
⊢ (∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → Fun {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
13 | 10, 12 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → Fun {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
14 | | dmsnopg 6105 |
. . . . . . . 8
⊢ (∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → dom {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} = {𝑚}) |
15 | 10, 14 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → dom {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} = {𝑚}) |
16 | 13, 15 | bnj1422 32717 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} Fn {𝑚}) |
17 | | bnj521 32616 |
. . . . . . 7
⊢ (𝑚 ∩ {𝑚}) = ∅ |
18 | | fnun 6529 |
. . . . . . 7
⊢ (((𝑓 Fn 𝑚 ∧ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} Fn {𝑚}) ∧ (𝑚 ∩ {𝑚}) = ∅) → (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) Fn (𝑚 ∪ {𝑚})) |
19 | 17, 18 | mpan2 687 |
. . . . . 6
⊢ ((𝑓 Fn 𝑚 ∧ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} Fn {𝑚}) → (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) Fn (𝑚 ∪ {𝑚})) |
20 | 16, 19 | sylan2 592 |
. . . . 5
⊢ ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏)) → (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) Fn (𝑚 ∪ {𝑚})) |
21 | | bnj535.3 |
. . . . . 6
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
22 | 21 | fneq1i 6514 |
. . . . 5
⊢ (𝐺 Fn (𝑚 ∪ {𝑚}) ↔ (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) Fn (𝑚 ∪ {𝑚})) |
23 | 20, 22 | sylibr 233 |
. . . 4
⊢ ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏)) → 𝐺 Fn (𝑚 ∪ {𝑚})) |
24 | | fneq2 6509 |
. . . 4
⊢ (𝑛 = (𝑚 ∪ {𝑚}) → (𝐺 Fn 𝑛 ↔ 𝐺 Fn (𝑚 ∪ {𝑚}))) |
25 | 23, 24 | syl5ibr 245 |
. . 3
⊢ (𝑛 = (𝑚 ∪ {𝑚}) → ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏)) → 𝐺 Fn 𝑛)) |
26 | 25 | imp 406 |
. 2
⊢ ((𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏))) → 𝐺 Fn 𝑛) |
27 | 3, 26 | sylbi 216 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛) |