Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj345 Structured version   Visualization version   GIF version

Theorem bnj345 32276
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj345 ((𝜑𝜓𝜒𝜃) ↔ (𝜃𝜑𝜓𝜒))

Proof of Theorem bnj345
StepHypRef Expression
1 bnj334 32275 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜒𝜑𝜓𝜃))
2 bnj250 32263 . . 3 ((𝜒𝜑𝜓𝜃) ↔ (𝜒 ∧ ((𝜑𝜓) ∧ 𝜃)))
3 3anass 1096 . . 3 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ↔ (𝜒 ∧ ((𝜑𝜓) ∧ 𝜃)))
42, 3bitr4i 281 . 2 ((𝜒𝜑𝜓𝜃) ↔ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃))
5 3anrev 1102 . . 3 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ↔ (𝜃 ∧ (𝜑𝜓) ∧ 𝜒))
6 bnj250 32263 . . . 4 ((𝜃𝜑𝜓𝜒) ↔ (𝜃 ∧ ((𝜑𝜓) ∧ 𝜒)))
7 3anass 1096 . . . 4 ((𝜃 ∧ (𝜑𝜓) ∧ 𝜒) ↔ (𝜃 ∧ ((𝜑𝜓) ∧ 𝜒)))
86, 7bitr4i 281 . . 3 ((𝜃𝜑𝜓𝜒) ↔ (𝜃 ∧ (𝜑𝜓) ∧ 𝜒))
95, 8bitr4i 281 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ↔ (𝜃𝜑𝜓𝜒))
101, 4, 93bitri 300 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜃𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088  w-bnj17 32248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-bnj17 32249
This theorem is referenced by:  bnj422  32277  bnj446  32279  bnj929  32500  bnj964  32507
  Copyright terms: Public domain W3C validator