|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj345 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj345 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj334 34727 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) | |
| 2 | bnj250 34715 | . . 3 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃) ↔ (𝜒 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜃))) | |
| 3 | 3anass 1095 | . . 3 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ↔ (𝜒 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜃))) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃) ↔ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) | 
| 5 | 3anrev 1101 | . . 3 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ↔ (𝜃 ∧ (𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | bnj250 34715 | . . . 4 ⊢ ((𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒))) | |
| 7 | 3anass 1095 | . . . 4 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒))) | |
| 8 | 6, 7 | bitr4i 278 | . . 3 ⊢ ((𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜃 ∧ (𝜑 ∧ 𝜓) ∧ 𝜒)) | 
| 9 | 5, 8 | bitr4i 278 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| 10 | 1, 4, 9 | 3bitri 297 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∧ w-bnj17 34700 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-bnj17 34701 | 
| This theorem is referenced by: bnj422 34729 bnj446 34731 bnj929 34950 bnj964 34957 | 
| Copyright terms: Public domain | W3C validator |