![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj558 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34766. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj558.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj558.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
bnj558.17 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj558.18 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj558.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
bnj558.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
bnj558.21 | ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj558.22 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj558.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj558.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj558.25 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
bnj558.28 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj558.29 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj558.36 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
Ref | Expression |
---|---|
bnj558 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘suc 𝑖) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj558.3 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
2 | bnj558.16 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | |
3 | bnj558.17 | . . 3 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
4 | bnj558.18 | . . 3 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
5 | bnj558.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
6 | bnj558.20 | . . 3 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
7 | bnj558.21 | . . 3 ⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
8 | bnj558.22 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
9 | bnj558.23 | . . 3 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
10 | bnj558.24 | . . 3 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
11 | bnj558.25 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | |
12 | bnj558.28 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
13 | bnj558.29 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
14 | bnj558.36 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | bnj557 34746 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘𝑚) = 𝐿) |
16 | bnj422 34560 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ (𝜂 ∧ 𝜁 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏)) | |
17 | bnj253 34549 | . . . . 5 ⊢ ((𝜂 ∧ 𝜁 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏) ↔ ((𝜂 ∧ 𝜁) ∧ 𝑅 FrSe 𝐴 ∧ 𝜏)) | |
18 | 16, 17 | bitri 274 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ ((𝜂 ∧ 𝜁) ∧ 𝑅 FrSe 𝐴 ∧ 𝜏)) |
19 | 18 | simp1bi 1142 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝜂 ∧ 𝜁)) |
20 | 5, 6, 9, 10, 9, 10 | bnj554 34744 | . . 3 ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
22 | 15, 21 | mpbid 231 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘suc 𝑖) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3944 ∪ cun 3945 ∅c0 4325 {csn 4633 〈cop 4639 ∪ ciun 5001 suc csuc 6378 Fn wfn 6549 ‘cfv 6554 ωcom 7876 ∧ w-bnj17 34531 predc-bnj14 34533 FrSe w-bnj15 34537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 ax-reg 9635 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-id 5580 df-eprel 5586 df-fr 5637 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-fv 6562 df-bnj17 34532 |
This theorem is referenced by: bnj571 34751 |
Copyright terms: Public domain | W3C validator |