Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj558 Structured version   Visualization version   GIF version

Theorem bnj558 32392
 Description: Technical lemma for bnj852 32411. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj558.3 𝐷 = (ω ∖ {∅})
bnj558.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj558.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj558.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj558.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj558.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj558.21 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj558.22 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj558.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj558.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj558.25 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj558.28 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj558.29 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj558.36 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj558 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺‘suc 𝑖) = 𝐾)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj558
StepHypRef Expression
1 bnj558.3 . . 3 𝐷 = (ω ∖ {∅})
2 bnj558.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
3 bnj558.17 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
4 bnj558.18 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj558.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
6 bnj558.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
7 bnj558.21 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
8 bnj558.22 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
9 bnj558.23 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
10 bnj558.24 . . 3 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj558.25 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
12 bnj558.28 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
13 bnj558.29 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
14 bnj558.36 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj557 32391 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
16 bnj422 32203 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ (𝜂𝜁𝑅 FrSe 𝐴𝜏))
17 bnj253 32192 . . . . 5 ((𝜂𝜁𝑅 FrSe 𝐴𝜏) ↔ ((𝜂𝜁) ∧ 𝑅 FrSe 𝐴𝜏))
1816, 17bitri 278 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ ((𝜂𝜁) ∧ 𝑅 FrSe 𝐴𝜏))
1918simp1bi 1143 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝜂𝜁))
205, 6, 9, 10, 9, 10bnj554 32389 . . 3 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
2119, 20syl 17 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
2215, 21mpbid 235 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺‘suc 𝑖) = 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071   ∖ cdif 3856   ∪ cun 3857  ∅c0 4226  {csn 4520  ⟨cop 4526  ∪ ciun 4881  suc csuc 6169   Fn wfn 6328  ‘cfv 6333  ωcom 7577   ∧ w-bnj17 32174   predc-bnj14 32176   FrSe w-bnj15 32180 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7457  ax-reg 9079 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-id 5428  df-eprel 5433  df-fr 5481  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-res 5534  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-fv 6341  df-bnj17 32175 This theorem is referenced by:  bnj571  32396
 Copyright terms: Public domain W3C validator