MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cad11 Structured version   Visualization version   GIF version

Theorem cad11 1619
Description: If (at least) two inputs are true, then the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cad11 ((𝜑𝜓) → cadd(𝜑, 𝜓, 𝜒))

Proof of Theorem cad11
StepHypRef Expression
1 orc 863 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
2 df-cad 1610 . 2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
31, 2sylibr 233 1 ((𝜑𝜓) → cadd(𝜑, 𝜓, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wxo 1503  caddwcad 1609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-cad 1610
This theorem is referenced by:  cad0  1621  cadtru  1624
  Copyright terms: Public domain W3C validator