|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cad11 | Structured version Visualization version GIF version | ||
| Description: If (at least) two inputs are true, then the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| cad11 | ⊢ ((𝜑 ∧ 𝜓) → cadd(𝜑, 𝜓, 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
| 2 | df-cad 1606 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝜑 ∧ 𝜓) → cadd(𝜑, 𝜓, 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ⊻ wxo 1510 caddwcad 1605 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-cad 1606 | 
| This theorem is referenced by: cad0 1617 cadtru 1619 | 
| Copyright terms: Public domain | W3C validator |