Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cadnot | Structured version Visualization version GIF version |
Description: The adder carry distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
Ref | Expression |
---|---|
cadnot | ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 979 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | ianor 979 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜒)) | |
3 | ianor 979 | . . 3 ⊢ (¬ (𝜓 ∧ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) | |
4 | 1, 2, 3 | 3anbi123i 1154 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) |
5 | 3ioran 1105 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) | |
6 | cador 1610 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) | |
7 | 5, 6 | xchnxbir 333 | . 2 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) |
8 | cadan 1611 | . 2 ⊢ (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) | |
9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∨ w3o 1085 ∧ w3a 1086 caddwcad 1608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-cad 1609 |
This theorem is referenced by: wl-df3maxtru1 35671 |
Copyright terms: Public domain | W3C validator |