| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadnot | Structured version Visualization version GIF version | ||
| Description: The adder carry distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| cadnot | ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 983 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | ianor 983 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜒)) | |
| 3 | ianor 983 | . . 3 ⊢ (¬ (𝜓 ∧ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) |
| 5 | 3ioran 1105 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) | |
| 6 | cador 1608 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | xchnxbir 333 | . 2 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) |
| 8 | cadan 1609 | . 2 ⊢ (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) | |
| 9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 caddwcad 1606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-cad 1607 |
| This theorem is referenced by: wl-df3maxtru1 37515 |
| Copyright terms: Public domain | W3C validator |