Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cad1 | Structured version Visualization version GIF version |
Description: If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 19-Jun-2020.) |
Ref | Expression |
---|---|
cad1 | ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadan 1612 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | |
2 | 3anass 1093 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)))) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)))) |
4 | olc 864 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
5 | olc 864 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
6 | 4, 5 | jca 511 | . . 3 ⊢ (𝜒 → ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
7 | 6 | biantrud 531 | . 2 ⊢ (𝜒 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))))) |
8 | 3, 7 | bitr4id 289 | 1 ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 caddwcad 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-cad 1610 |
This theorem is referenced by: cadifp 1623 sadadd2lem2 16085 sadcaddlem 16092 |
Copyright terms: Public domain | W3C validator |