|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cad1 | Structured version Visualization version GIF version | ||
| Description: If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 19-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| cad1 | ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cadan 1609 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | |
| 2 | 3anass 1095 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)))) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)))) | 
| 4 | olc 869 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
| 5 | olc 869 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝜒 → ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | 
| 7 | 6 | biantrud 531 | . 2 ⊢ (𝜒 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))))) | 
| 8 | 3, 7 | bitr4id 290 | 1 ⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 caddwcad 1606 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1512 df-cad 1607 | 
| This theorem is referenced by: cadifp 1619 sadadd2lem2 16487 sadcaddlem 16494 | 
| Copyright terms: Public domain | W3C validator |