MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cad1 Structured version   Visualization version   GIF version

Theorem cad1 1620
Description: If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 19-Jun-2020.)
Assertion
Ref Expression
cad1 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))

Proof of Theorem cad1
StepHypRef Expression
1 cadan 1612 . . 3 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)))
2 3anass 1093 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ∧ (𝜓𝜒))))
31, 2bitri 274 . 2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ∧ (𝜓𝜒))))
4 olc 864 . . . 4 (𝜒 → (𝜑𝜒))
5 olc 864 . . . 4 (𝜒 → (𝜓𝜒))
64, 5jca 511 . . 3 (𝜒 → ((𝜑𝜒) ∧ (𝜓𝜒)))
76biantrud 531 . 2 (𝜒 → ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ∧ (𝜓𝜒)))))
83, 7bitr4id 289 1 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085  caddwcad 1609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-cad 1610
This theorem is referenced by:  cadifp  1623  sadadd2lem2  16085  sadcaddlem  16092
  Copyright terms: Public domain W3C validator