MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadtru Structured version   Visualization version   GIF version

Theorem cadtru 1623
Description: The adder carry is true as soon as its first two inputs are the truth constant. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadtru cadd(⊤, ⊤, 𝜑)

Proof of Theorem cadtru
StepHypRef Expression
1 tru 1543 . 2
2 cad11 1618 . 2 ((⊤ ∧ ⊤) → cadd(⊤, ⊤, 𝜑))
31, 1, 2mp2an 689 1 cadd(⊤, ⊤, 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  caddwcad 1608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-cad 1609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator