| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > con5VD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of con5 44512.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 44512 is con5VD 44889 without virtual deductions and was automatically
derived from con5VD 44889.
|
| Ref | Expression |
|---|---|
| con5VD | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44564 | . . . . 5 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) ) | |
| 2 | biimpr 220 | . . . . 5 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 → 𝜑)) | |
| 3 | 1, 2 | e1a 44617 | . . . 4 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) ) |
| 4 | con3 153 | . . . 4 ⊢ ((¬ 𝜓 → 𝜑) → (¬ 𝜑 → ¬ ¬ 𝜓)) | |
| 5 | 3, 4 | e1a 44617 | . . 3 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓) ) |
| 6 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 7 | imbi2 348 | . . . 4 ⊢ ((𝜓 ↔ ¬ ¬ 𝜓) → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓))) | |
| 8 | 7 | biimprcd 250 | . . 3 ⊢ ((¬ 𝜑 → ¬ ¬ 𝜓) → ((𝜓 ↔ ¬ ¬ 𝜓) → (¬ 𝜑 → 𝜓))) |
| 9 | 5, 6, 8 | e10 44684 | . 2 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) ) |
| 10 | 9 | in1 44561 | 1 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |