 Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con5VD Structured version   Visualization version   GIF version

Theorem con5VD 39628
Description: Virtual deduction proof of con5 39224. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 39224 is con5VD 39628 without virtual deductions and was automatically derived from con5VD 39628.
 1:: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   ) 2:1: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜓 → 𝜑)   ) 3:2: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → ¬ ¬ 𝜓 )   ) 4:: ⊢ (𝜓 ↔ ¬ ¬ 𝜓) 5:3,4: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → 𝜓)   ) qed:5: ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con5VD ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))

Proof of Theorem con5VD
StepHypRef Expression
1 idn1 39286 . . . . 5 (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   )
2 biimpr 211 . . . . 5 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜓𝜑))
31, 2e1a 39348 . . . 4 (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜓𝜑)   )
4 con3 150 . . . 4 ((¬ 𝜓𝜑) → (¬ 𝜑 → ¬ ¬ 𝜓))
53, 4e1a 39348 . . 3 (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑 → ¬ ¬ 𝜓)   )
6 notnotb 306 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
7 imbi2 339 . . . 4 ((𝜓 ↔ ¬ ¬ 𝜓) → ((¬ 𝜑𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)))
87biimprcd 241 . . 3 ((¬ 𝜑 → ¬ ¬ 𝜓) → ((𝜓 ↔ ¬ ¬ 𝜓) → (¬ 𝜑𝜓)))
95, 6, 8e10 39415 . 2 (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑𝜓)   )
109in1 39283 1 ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 198  df-vd1 39282 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator