![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > con5VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of con5 43840.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 43840 is con5VD 44218 without virtual deductions and was automatically
derived from con5VD 44218.
|
Ref | Expression |
---|---|
con5VD | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 43892 | . . . . 5 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) ) | |
2 | biimpr 219 | . . . . 5 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 → 𝜑)) | |
3 | 1, 2 | e1a 43945 | . . . 4 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) ) |
4 | con3 153 | . . . 4 ⊢ ((¬ 𝜓 → 𝜑) → (¬ 𝜑 → ¬ ¬ 𝜓)) | |
5 | 3, 4 | e1a 43945 | . . 3 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓) ) |
6 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
7 | imbi2 348 | . . . 4 ⊢ ((𝜓 ↔ ¬ ¬ 𝜓) → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓))) | |
8 | 7 | biimprcd 249 | . . 3 ⊢ ((¬ 𝜑 → ¬ ¬ 𝜓) → ((𝜓 ↔ ¬ ¬ 𝜓) → (¬ 𝜑 → 𝜓))) |
9 | 5, 6, 8 | e10 44012 | . 2 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) ) |
10 | 9 | in1 43889 | 1 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |