| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > con5VD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of con5 44519.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 44519 is con5VD 44896 without virtual deductions and was automatically
derived from con5VD 44896.
|
| Ref | Expression |
|---|---|
| con5VD | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44571 | . . . . 5 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) ) | |
| 2 | biimpr 220 | . . . . 5 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 → 𝜑)) | |
| 3 | 1, 2 | e1a 44624 | . . . 4 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) ) |
| 4 | con3 153 | . . . 4 ⊢ ((¬ 𝜓 → 𝜑) → (¬ 𝜑 → ¬ ¬ 𝜓)) | |
| 5 | 3, 4 | e1a 44624 | . . 3 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓) ) |
| 6 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 7 | imbi2 348 | . . . 4 ⊢ ((𝜓 ↔ ¬ ¬ 𝜓) → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓))) | |
| 8 | 7 | biimprcd 250 | . . 3 ⊢ ((¬ 𝜑 → ¬ ¬ 𝜓) → ((𝜓 ↔ ¬ ¬ 𝜓) → (¬ 𝜑 → 𝜓))) |
| 9 | 5, 6, 8 | e10 44691 | . 2 ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) ) |
| 10 | 9 | in1 44568 | 1 ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |