Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee33 Structured version   Visualization version   GIF version

Theorem ee33 44484
Description: Non-virtual deduction form of e33 44696. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
Hypotheses
Ref Expression
ee33.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee33.2 (𝜑 → (𝜓 → (𝜒𝜏)))
ee33.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
ee33 (𝜑 → (𝜓 → (𝜒𝜂)))

Proof of Theorem ee33
StepHypRef Expression
1 ee33.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 ee33.2 . 2 (𝜑 → (𝜓 → (𝜒𝜏)))
3 ee33.3 . . 3 (𝜃 → (𝜏𝜂))
43imim3i 64 . 2 ((𝜒𝜃) → ((𝜒𝜏) → (𝜒𝜂)))
51, 2, 4syl6c 70 1 (𝜑 → (𝜓 → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  truniALT  44504  onfrALTlem2  44509  ee33an  44698  ee03  44703  ee30  44707  ee31  44714  ee32  44721  trintALT  44843
  Copyright terms: Public domain W3C validator