Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee33 Structured version   Visualization version   GIF version

Theorem ee33 43272
Description: Non-virtual deduction form of e33 43485. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
Hypotheses
Ref Expression
ee33.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee33.2 (𝜑 → (𝜓 → (𝜒𝜏)))
ee33.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
ee33 (𝜑 → (𝜓 → (𝜒𝜂)))

Proof of Theorem ee33
StepHypRef Expression
1 ee33.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 ee33.2 . 2 (𝜑 → (𝜓 → (𝜒𝜏)))
3 ee33.3 . . 3 (𝜃 → (𝜏𝜂))
43imim3i 64 . 2 ((𝜒𝜃) → ((𝜒𝜏) → (𝜒𝜂)))
51, 2, 4syl6c 70 1 (𝜑 → (𝜓 → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  truniALT  43292  onfrALTlem2  43297  ee33an  43487  ee03  43492  ee30  43496  ee31  43503  ee32  43510  trintALT  43632
  Copyright terms: Public domain W3C validator