![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicom1 220 pm5.74 270 bija 382 simplbi2comt 503 pm4.72 949 bianir 1058 albi 1821 spsbbi 2077 cbv2w 2334 cbv2 2403 cbv2h 2406 equvel 2456 dfeumo 2532 eu6 2569 2eu6 2653 ralbi 3104 rexbi 3105 ceqsal1t 3505 elabgt 3663 euind 3721 reu6 3723 reuind 3750 sbciegft 3816 axprALT 5421 axpr 5427 iota4 6525 fv3 6910 fineqvpow 34096 nn0prpwlem 35207 nn0prpw 35208 bj-animbi 35435 bj-bi3ant 35467 bj-cbv2hv 35675 bj-ceqsalt0 35764 bj-ceqsalt1 35765 bj-bm1.3ii 35945 dfgcd3 36205 tsbi3 37003 mapdrvallem2 40516 axc11next 43165 pm13.192 43169 exbir 43239 con5 43283 sbcim2g 43299 trsspwALT 43579 trsspwALT2 43580 sspwtr 43582 sspwtrALT 43583 pwtrVD 43585 pwtrrVD 43586 snssiALTVD 43588 sstrALT2VD 43595 sstrALT2 43596 suctrALT2VD 43597 eqsbc2VD 43601 simplbi2VD 43607 exbirVD 43614 exbiriVD 43615 imbi12VD 43634 sbcim2gVD 43636 simplbi2comtVD 43649 con5VD 43661 2uasbanhVD 43672 nimnbi2 43859 absnsb 45737 thincciso 47669 |
Copyright terms: Public domain | W3C validator |