![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicom1 220 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 946 bianir 1055 albi 1812 spsbbi 2068 cbv2w 2325 cbv2 2394 cbv2h 2397 equvel 2447 dfeumo 2523 eu6 2560 2eu6 2644 ralbi 3095 rexbi 3096 ceqsal1t 3497 elabgt 3654 euind 3712 reu6 3714 reuind 3741 sbciegft 3807 axprALT 5410 axpr 5416 iota4 6514 fv3 6899 fineqvpow 34585 nn0prpwlem 35697 nn0prpw 35698 bj-animbi 35925 bj-bi3ant 35957 bj-cbv2hv 36165 bj-ceqsalt0 36254 bj-ceqsalt1 36255 bj-bm1.3ii 36435 dfgcd3 36695 tsbi3 37493 mapdrvallem2 41006 axc11next 43654 pm13.192 43658 exbir 43728 con5 43772 sbcim2g 43788 trsspwALT 44068 trsspwALT2 44069 sspwtr 44071 sspwtrALT 44072 pwtrVD 44074 pwtrrVD 44075 snssiALTVD 44077 sstrALT2VD 44084 sstrALT2 44085 suctrALT2VD 44086 eqsbc2VD 44090 simplbi2VD 44096 exbirVD 44103 exbiriVD 44104 imbi12VD 44123 sbcim2gVD 44125 simplbi2comtVD 44138 con5VD 44150 2uasbanhVD 44161 nimnbi2 44347 absnsb 46222 thincciso 47857 |
Copyright terms: Public domain | W3C validator |