Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicom1 220 pm5.74 269 bija 381 simplbi2comt 501 pm4.72 946 bianir 1055 albi 1822 spsbbi 2077 cbv2w 2336 cbv2 2403 cbv2h 2406 equvel 2456 dfeumo 2537 eu6 2574 2eu6 2658 ralbi 3092 rexbi 3169 ceqsalt 3452 vtoclgft 3482 elabgt 3596 euind 3654 reu6 3656 reuind 3683 sbciegft 3749 axprALT 5340 axpr 5346 iota4 6399 fv3 6774 fineqvpow 32965 nn0prpwlem 34438 nn0prpw 34439 bj-animbi 34666 bj-bi3ant 34698 bj-cbv2hv 34906 bj-ceqsalt0 34996 bj-ceqsalt1 34997 bj-bm1.3ii 35162 dfgcd3 35422 tsbi3 36220 mapdrvallem2 39586 axc11next 41913 pm13.192 41917 exbir 41987 con5 42031 sbcim2g 42047 trsspwALT 42327 trsspwALT2 42328 sspwtr 42330 sspwtrALT 42331 pwtrVD 42333 pwtrrVD 42334 snssiALTVD 42336 sstrALT2VD 42343 sstrALT2 42344 suctrALT2VD 42345 eqsbc2VD 42349 simplbi2VD 42355 exbirVD 42362 exbiriVD 42363 imbi12VD 42382 sbcim2gVD 42384 simplbi2comtVD 42397 con5VD 42409 2uasbanhVD 42420 absnsb 44408 thincciso 46218 |
Copyright terms: Public domain | W3C validator |