![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicom1 220 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 948 bianir 1057 albi 1813 spsbbi 2069 cbv2w 2328 cbv2 2397 cbv2h 2400 equvel 2450 dfeumo 2526 eu6 2563 2eu6 2647 ralbi 3098 rexbi 3099 ceqsal1t 3500 elabgt 3658 elabgtOLD 3659 euind 3717 reu6 3719 reuind 3746 sbciegft 3812 axprALT 5416 axpr 5422 iota4 6523 fv3 6909 fineqvpow 34652 nn0prpwlem 35742 nn0prpw 35743 bj-animbi 35970 bj-bi3ant 36002 bj-cbv2hv 36210 bj-ceqsalt0 36298 bj-ceqsalt1 36299 bj-bm1.3ii 36479 dfgcd3 36739 tsbi3 37543 mapdrvallem2 41055 axc11next 43766 pm13.192 43770 exbir 43840 con5 43884 sbcim2g 43900 trsspwALT 44180 trsspwALT2 44181 sspwtr 44183 sspwtrALT 44184 pwtrVD 44186 pwtrrVD 44187 snssiALTVD 44189 sstrALT2VD 44196 sstrALT2 44197 suctrALT2VD 44198 eqsbc2VD 44202 simplbi2VD 44208 exbirVD 44215 exbiriVD 44216 imbi12VD 44235 sbcim2gVD 44237 simplbi2comtVD 44250 con5VD 44262 2uasbanhVD 44273 nimnbi2 44459 absnsb 46332 thincciso 47978 |
Copyright terms: Public domain | W3C validator |