| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2401 cbv2h 2404 equvel 2454 dfeumo 2530 eu6 2567 2eu6 2650 ralbi 3084 rexbi 3085 ceqsal1t 3469 elabgtOLD 3628 elabgtOLDOLD 3629 euind 3684 reu6 3686 reuind 3713 sbciegftOLD 3780 sepex 5239 axprALT 5361 axprOLD 5370 iota4 6463 fv3 6840 elirrv 9489 fineqvpow 35077 nn0prpwlem 36306 nn0prpw 36307 bj-animbi 36543 bj-bi3ant 36573 bj-cbv2hv 36781 bj-ceqsalt0 36868 bj-ceqsalt1 36869 bj-bm1.3ii 37048 dfgcd3 37308 tsbi3 38125 mapdrvallem2 41634 eu6w 42659 axc11next 44389 pm13.192 44393 exbir 44463 con5 44506 sbcim2g 44522 trsspwALT 44801 trsspwALT2 44802 sspwtr 44804 sspwtrALT 44805 pwtrVD 44807 pwtrrVD 44808 snssiALTVD 44810 sstrALT2VD 44817 sstrALT2 44818 suctrALT2VD 44819 eqsbc2VD 44823 simplbi2VD 44829 exbirVD 44836 exbiriVD 44837 imbi12VD 44856 sbcim2gVD 44858 simplbi2comtVD 44871 con5VD 44883 2uasbanhVD 44894 nimnbi2 45152 absnsb 47021 thincciso 49448 |
| Copyright terms: Public domain | W3C validator |