![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1814 spsbbi 2070 cbv2w 2337 cbv2 2405 cbv2h 2408 equvel 2458 dfeumo 2534 eu6 2571 2eu6 2654 ralbi 3100 rexbi 3101 ceqsal1t 3511 elabgt 3671 elabgtOLD 3672 euind 3732 reu6 3734 reuind 3761 sbciegftOLD 3829 sepex 5305 axprALT 5427 axprOLD 5436 iota4 6543 fv3 6924 fineqvpow 35088 nn0prpwlem 36304 nn0prpw 36305 bj-animbi 36541 bj-bi3ant 36571 bj-cbv2hv 36779 bj-ceqsalt0 36866 bj-ceqsalt1 36867 bj-bm1.3ii 37046 dfgcd3 37306 tsbi3 38121 mapdrvallem2 41627 eu6w 42662 axc11next 44401 pm13.192 44405 exbir 44475 con5 44519 sbcim2g 44535 trsspwALT 44815 trsspwALT2 44816 sspwtr 44818 sspwtrALT 44819 pwtrVD 44821 pwtrrVD 44822 snssiALTVD 44824 sstrALT2VD 44831 sstrALT2 44832 suctrALT2VD 44833 eqsbc2VD 44837 simplbi2VD 44843 exbirVD 44850 exbiriVD 44851 imbi12VD 44870 sbcim2gVD 44872 simplbi2comtVD 44885 con5VD 44897 2uasbanhVD 44908 nimnbi2 45106 absnsb 46976 thincciso 48848 |
Copyright terms: Public domain | W3C validator |