| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2401 cbv2h 2404 equvel 2454 dfeumo 2530 eu6 2567 2eu6 2650 ralbi 3085 rexbi 3086 ceqsal1t 3477 elabgtOLD 3636 elabgtOLDOLD 3637 euind 3692 reu6 3694 reuind 3721 sbciegftOLD 3788 sepex 5250 axprALT 5372 axprOLD 5381 iota4 6480 fv3 6858 fineqvpow 35079 nn0prpwlem 36303 nn0prpw 36304 bj-animbi 36540 bj-bi3ant 36570 bj-cbv2hv 36778 bj-ceqsalt0 36865 bj-ceqsalt1 36866 bj-bm1.3ii 37045 dfgcd3 37305 tsbi3 38122 mapdrvallem2 41632 eu6w 42657 axc11next 44388 pm13.192 44392 exbir 44462 con5 44505 sbcim2g 44521 trsspwALT 44800 trsspwALT2 44801 sspwtr 44803 sspwtrALT 44804 pwtrVD 44806 pwtrrVD 44807 snssiALTVD 44809 sstrALT2VD 44816 sstrALT2 44817 suctrALT2VD 44818 eqsbc2VD 44822 simplbi2VD 44828 exbirVD 44835 exbiriVD 44836 imbi12VD 44855 sbcim2gVD 44857 simplbi2comtVD 44870 con5VD 44882 2uasbanhVD 44893 nimnbi2 45151 absnsb 47021 thincciso 49435 |
| Copyright terms: Public domain | W3C validator |