| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1819 spsbbi 2076 cbv2w 2337 cbv2 2403 cbv2h 2406 equvel 2456 dfeumo 2532 eu6 2569 2eu6 2652 ralbi 3087 rexbi 3088 ceqsal1t 3469 elabgtOLD 3623 elabgtOLDOLD 3624 euind 3678 reu6 3680 reuind 3707 sbciegftOLD 3774 sepex 5236 axprALT 5358 axprOLD 5367 iota4 6462 fv3 6840 elirrv 9483 r1omhfb 35123 r1omhfbregs 35133 fineqvpow 35138 nn0prpwlem 36366 nn0prpw 36367 bj-animbi 36603 bj-bi3ant 36633 bj-cbv2hv 36841 bj-ceqsalt0 36928 bj-ceqsalt1 36929 bj-bm1.3ii 37108 dfgcd3 37368 tsbi3 38174 mapdrvallem2 41743 eu6w 42768 axc11next 44498 pm13.192 44502 exbir 44571 con5 44614 sbcim2g 44630 trsspwALT 44909 trsspwALT2 44910 sspwtr 44912 sspwtrALT 44913 pwtrVD 44915 pwtrrVD 44916 snssiALTVD 44918 sstrALT2VD 44925 sstrALT2 44926 suctrALT2VD 44927 eqsbc2VD 44931 simplbi2VD 44937 exbirVD 44944 exbiriVD 44945 imbi12VD 44964 sbcim2gVD 44966 simplbi2comtVD 44979 con5VD 44991 2uasbanhVD 45002 nimnbi2 45260 absnsb 47126 thincciso 49553 |
| Copyright terms: Public domain | W3C validator |