Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicom1 220 pm5.74 269 bija 382 simplbi2comt 502 pm4.72 947 bianir 1056 albi 1821 spsbbi 2077 cbv2w 2335 cbv2 2404 cbv2h 2407 equvel 2457 dfeumo 2538 eu6 2575 2eu6 2659 ralbi 3090 rexbi 3174 ceqsalt 3463 vtoclgft 3493 elabgt 3604 euind 3660 reu6 3662 reuind 3689 sbciegft 3755 axprALT 5346 axpr 5352 iota4 6418 fv3 6801 fineqvpow 33074 nn0prpwlem 34520 nn0prpw 34521 bj-animbi 34748 bj-bi3ant 34780 bj-cbv2hv 34988 bj-ceqsalt0 35078 bj-ceqsalt1 35079 bj-bm1.3ii 35244 dfgcd3 35504 tsbi3 36302 mapdrvallem2 39666 axc11next 42031 pm13.192 42035 exbir 42105 con5 42149 sbcim2g 42165 trsspwALT 42445 trsspwALT2 42446 sspwtr 42448 sspwtrALT 42449 pwtrVD 42451 pwtrrVD 42452 snssiALTVD 42454 sstrALT2VD 42461 sstrALT2 42462 suctrALT2VD 42463 eqsbc2VD 42467 simplbi2VD 42473 exbirVD 42480 exbiriVD 42481 imbi12VD 42500 sbcim2gVD 42502 simplbi2comtVD 42515 con5VD 42527 2uasbanhVD 42538 absnsb 44532 thincciso 46341 |
Copyright terms: Public domain | W3C validator |