![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 950 bianir 1059 albi 1816 spsbbi 2073 cbv2w 2343 cbv2 2411 cbv2h 2414 equvel 2464 dfeumo 2540 eu6 2577 2eu6 2660 ralbi 3109 rexbi 3110 ceqsal1t 3522 elabgt 3685 elabgtOLD 3686 euind 3746 reu6 3748 reuind 3775 sbciegftOLD 3843 axprALT 5440 axpr 5446 iota4 6554 fv3 6938 fineqvpow 35072 nn0prpwlem 36288 nn0prpw 36289 bj-animbi 36525 bj-bi3ant 36555 bj-cbv2hv 36763 bj-ceqsalt0 36850 bj-ceqsalt1 36851 bj-bm1.3ii 37030 dfgcd3 37290 tsbi3 38095 mapdrvallem2 41602 eu6w 42631 axc11next 44375 pm13.192 44379 exbir 44449 con5 44493 sbcim2g 44509 trsspwALT 44789 trsspwALT2 44790 sspwtr 44792 sspwtrALT 44793 pwtrVD 44795 pwtrrVD 44796 snssiALTVD 44798 sstrALT2VD 44805 sstrALT2 44806 suctrALT2VD 44807 eqsbc2VD 44811 simplbi2VD 44817 exbirVD 44824 exbiriVD 44825 imbi12VD 44844 sbcim2gVD 44846 simplbi2comtVD 44859 con5VD 44871 2uasbanhVD 44882 nimnbi2 45070 absnsb 46942 thincciso 48716 |
Copyright terms: Public domain | W3C validator |