| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1818 spsbbi 2073 cbv2w 2338 cbv2 2407 cbv2h 2410 equvel 2460 dfeumo 2536 eu6 2573 2eu6 2656 ralbi 3092 rexbi 3093 ceqsal1t 3493 elabgt 3651 elabgtOLD 3652 euind 3707 reu6 3709 reuind 3736 sbciegftOLD 3803 sepex 5270 axprALT 5392 axprOLD 5401 iota4 6512 fv3 6894 fineqvpow 35127 nn0prpwlem 36340 nn0prpw 36341 bj-animbi 36577 bj-bi3ant 36607 bj-cbv2hv 36815 bj-ceqsalt0 36902 bj-ceqsalt1 36903 bj-bm1.3ii 37082 dfgcd3 37342 tsbi3 38159 mapdrvallem2 41664 eu6w 42699 axc11next 44430 pm13.192 44434 exbir 44504 con5 44547 sbcim2g 44563 trsspwALT 44842 trsspwALT2 44843 sspwtr 44845 sspwtrALT 44846 pwtrVD 44848 pwtrrVD 44849 snssiALTVD 44851 sstrALT2VD 44858 sstrALT2 44859 suctrALT2VD 44860 eqsbc2VD 44864 simplbi2VD 44870 exbirVD 44877 exbiriVD 44878 imbi12VD 44897 sbcim2gVD 44899 simplbi2comtVD 44912 con5VD 44924 2uasbanhVD 44935 nimnbi2 45188 absnsb 47056 thincciso 49339 |
| Copyright terms: Public domain | W3C validator |