| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpr | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | simprim 166 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom1 221 pm5.74 270 bija 380 simplbi2comt 501 pm4.72 951 bianir 1058 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2402 cbv2h 2405 equvel 2455 dfeumo 2531 eu6 2568 2eu6 2651 ralbi 3086 rexbi 3087 ceqsal1t 3483 elabgtOLD 3642 elabgtOLDOLD 3643 euind 3698 reu6 3700 reuind 3727 sbciegftOLD 3794 sepex 5258 axprALT 5380 axprOLD 5389 iota4 6495 fv3 6879 fineqvpow 35093 nn0prpwlem 36317 nn0prpw 36318 bj-animbi 36554 bj-bi3ant 36584 bj-cbv2hv 36792 bj-ceqsalt0 36879 bj-ceqsalt1 36880 bj-bm1.3ii 37059 dfgcd3 37319 tsbi3 38136 mapdrvallem2 41646 eu6w 42671 axc11next 44402 pm13.192 44406 exbir 44476 con5 44519 sbcim2g 44535 trsspwALT 44814 trsspwALT2 44815 sspwtr 44817 sspwtrALT 44818 pwtrVD 44820 pwtrrVD 44821 snssiALTVD 44823 sstrALT2VD 44830 sstrALT2 44831 suctrALT2VD 44832 eqsbc2VD 44836 simplbi2VD 44842 exbirVD 44849 exbiriVD 44850 imbi12VD 44869 sbcim2gVD 44871 simplbi2comtVD 44884 con5VD 44896 2uasbanhVD 44907 nimnbi2 45165 absnsb 47032 thincciso 49446 |
| Copyright terms: Public domain | W3C validator |