![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 972 dedlem0b 1044 meredith 1644 necon3bd 2955 necon1bd 2959 spc2d 3593 sspss 4100 neldif 4130 ssonprc 7775 limsssuc 7839 limom 7871 onfununi 8341 pw2f1olem 9076 domtriord 9123 pssnn 9168 pssnnOLD 9265 ordtypelem10 9522 rankxpsuc 9877 carden2a 9961 fidomtri2 9989 alephdom 10076 isf32lem12 10359 isfin1-3 10381 isfin7-2 10391 entric 10552 inttsk 10769 zeo 12648 zeo2 12649 xrlttri 13118 xaddf 13203 elfzonelfzo 13734 fzonfzoufzol 13735 elfznelfzo 13737 om2uzf1oi 13918 hashnfinnn0 14321 ruclem3 16176 sumodd 16331 bitsinv1lem 16382 sadcaddlem 16398 phiprmpw 16709 iserodd 16768 fldivp1 16830 prmpwdvds 16837 vdwlem6 16919 sylow2alem2 19486 efgs1b 19604 fctop 22507 cctop 22509 ppttop 22510 iccpnfcnv 24460 iccpnfhmeo 24461 iscau2 24794 ovolicc2lem2 25035 mbfeqalem1 25158 limccnp2 25409 radcnv0 25928 psercnlem1 25937 pserdvlem2 25940 logtayl 26168 cxpsqrt 26211 rlimcnp2 26471 amgm 26495 pntpbnd1 27089 pntlem3 27112 nolesgn2o 27174 nogesgn1o 27176 atssma 31631 fsuppcurry1 31950 fsuppcurry2 31951 supxrnemnf 31981 xrge0iifcnv 32913 eulerpartlemf 33369 cusgracyclt3v 34147 arg-ax 35301 pw2f1ocnv 41776 onsupnmax 41977 infordmin 42283 clsk1independent 42797 pm10.57 43130 con5 43283 con3ALT2 43291 xrred 44075 afvco2 45884 islininds2 47165 |
Copyright terms: Public domain | W3C validator |