| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1640 ax12ev2 2179 necon3bd 2945 necon1bd 2949 spc2d 3585 sspss 4082 neldif 4114 ssonprc 7789 limsssuc 7853 limom 7885 onfununi 8363 pw2f1olem 9098 domtriord 9145 pssnn 9190 ordtypelem10 9549 rankxpsuc 9904 carden2a 9988 fidomtri2 10016 alephdom 10103 isf32lem12 10386 isfin1-3 10408 isfin7-2 10418 entric 10579 inttsk 10796 zeo 12687 zeo2 12688 xrlttri 13163 xaddf 13248 elfzonelfzo 13790 fzonfzoufzol 13791 elfznelfzo 13793 om2uzf1oi 13976 hashnfinnn0 14383 ruclem3 16252 sumodd 16408 bitsinv1lem 16461 sadcaddlem 16477 phiprmpw 16796 iserodd 16856 fldivp1 16918 prmpwdvds 16925 vdwlem6 17007 sylow2alem2 19605 efgs1b 19723 fctop 22959 cctop 22961 ppttop 22962 iccpnfcnv 24912 iccpnfhmeo 24913 iscau2 25248 ovolicc2lem2 25490 mbfeqalem1 25613 limccnp2 25864 radcnv0 26396 psercnlem1 26406 pserdvlem2 26409 logtayl 26639 cxpsqrt 26682 rlimcnp2 26946 amgm 26971 pntpbnd1 27567 pntlem3 27590 nolesgn2o 27653 nogesgn1o 27655 atssma 32326 fsuppcurry1 32672 fsuppcurry2 32673 supxrnemnf 32714 xrge0iifcnv 33907 eulerpartlemf 34347 cusgracyclt3v 35136 arg-ax 36392 pw2f1ocnv 43027 onsupnmax 43218 infordmin 43522 clsk1independent 44036 pm10.57 44362 con5 44514 con3ALT2 44522 xrred 45348 afvco2 47161 islininds2 48374 |
| Copyright terms: Public domain | W3C validator |