| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1642 ax12ev2 2183 necon3bd 2942 necon1bd 2946 spc2d 3557 sspss 4052 neldif 4084 ssonprc 7720 limsssuc 7780 limom 7812 onfununi 8261 pw2f1olem 8994 domtriord 9036 pssnn 9078 ordtypelem10 9413 rankxpsuc 9772 carden2a 9856 fidomtri2 9884 alephdom 9969 isf32lem12 10252 isfin1-3 10274 isfin7-2 10284 entric 10445 inttsk 10662 zeo 12556 zeo2 12557 xrlttri 13035 xaddf 13120 elfzonelfzo 13666 fzonfzoufzol 13668 elfznelfzo 13670 om2uzf1oi 13857 hashnfinnn0 14265 ruclem3 16139 sumodd 16296 bitsinv1lem 16349 sadcaddlem 16365 phiprmpw 16684 iserodd 16744 fldivp1 16806 prmpwdvds 16813 vdwlem6 16895 sylow2alem2 19528 efgs1b 19646 fctop 22917 cctop 22919 ppttop 22920 iccpnfcnv 24867 iccpnfhmeo 24868 iscau2 25202 ovolicc2lem2 25444 mbfeqalem1 25567 limccnp2 25818 radcnv0 26350 psercnlem1 26360 pserdvlem2 26363 logtayl 26594 cxpsqrt 26637 rlimcnp2 26901 amgm 26926 pntpbnd1 27522 pntlem3 27545 nolesgn2o 27608 nogesgn1o 27610 atssma 32353 fsuppcurry1 32702 fsuppcurry2 32703 supxrnemnf 32746 xrge0iifcnv 33941 eulerpartlemf 34378 onvf1odlem4 35138 cusgracyclt3v 35188 arg-ax 36449 pw2f1ocnv 43069 onsupnmax 43260 infordmin 43564 clsk1independent 44078 pm10.57 44403 con5 44554 con3ALT2 44562 xrred 45402 afvco2 47206 islininds2 48515 |
| Copyright terms: Public domain | W3C validator |