| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1641 ax12ev2 2181 necon3bd 2939 necon1bd 2943 spc2d 3568 sspss 4065 neldif 4097 ssonprc 7763 limsssuc 7826 limom 7858 onfununi 8310 pw2f1olem 9045 domtriord 9087 pssnn 9132 ordtypelem10 9480 rankxpsuc 9835 carden2a 9919 fidomtri2 9947 alephdom 10034 isf32lem12 10317 isfin1-3 10339 isfin7-2 10349 entric 10510 inttsk 10727 zeo 12620 zeo2 12621 xrlttri 13099 xaddf 13184 elfzonelfzo 13730 fzonfzoufzol 13731 elfznelfzo 13733 om2uzf1oi 13918 hashnfinnn0 14326 ruclem3 16201 sumodd 16358 bitsinv1lem 16411 sadcaddlem 16427 phiprmpw 16746 iserodd 16806 fldivp1 16868 prmpwdvds 16875 vdwlem6 16957 sylow2alem2 19548 efgs1b 19666 fctop 22891 cctop 22893 ppttop 22894 iccpnfcnv 24842 iccpnfhmeo 24843 iscau2 25177 ovolicc2lem2 25419 mbfeqalem1 25542 limccnp2 25793 radcnv0 26325 psercnlem1 26335 pserdvlem2 26338 logtayl 26569 cxpsqrt 26612 rlimcnp2 26876 amgm 26901 pntpbnd1 27497 pntlem3 27520 nolesgn2o 27583 nogesgn1o 27585 atssma 32307 fsuppcurry1 32648 fsuppcurry2 32649 supxrnemnf 32691 xrge0iifcnv 33923 eulerpartlemf 34361 onvf1odlem4 35093 cusgracyclt3v 35143 arg-ax 36404 pw2f1ocnv 43026 onsupnmax 43217 infordmin 43521 clsk1independent 44035 pm10.57 44360 con5 44512 con3ALT2 44520 xrred 45361 afvco2 47177 islininds2 48473 |
| Copyright terms: Public domain | W3C validator |