Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 970 dedlem0b 1042 meredith 1644 necon3bd 2957 necon1bd 2961 spc2d 3541 sspss 4034 neldif 4064 ssonprc 7637 limsssuc 7697 limom 7728 onfununi 8172 pw2f1olem 8863 domtriord 8910 pssnn 8951 pssnnOLD 9040 ordtypelem10 9286 rankxpsuc 9640 carden2a 9724 fidomtri2 9752 alephdom 9837 isf32lem12 10120 isfin1-3 10142 isfin7-2 10152 entric 10313 inttsk 10530 zeo 12406 zeo2 12407 xrlttri 12873 xaddf 12958 elfzonelfzo 13489 fzonfzoufzol 13490 elfznelfzo 13492 om2uzf1oi 13673 hashnfinnn0 14076 ruclem3 15942 sumodd 16097 bitsinv1lem 16148 sadcaddlem 16164 phiprmpw 16477 iserodd 16536 fldivp1 16598 prmpwdvds 16605 vdwlem6 16687 sylow2alem2 19223 efgs1b 19342 fctop 22154 cctop 22156 ppttop 22157 iccpnfcnv 24107 iccpnfhmeo 24108 iscau2 24441 ovolicc2lem2 24682 mbfeqalem1 24805 limccnp2 25056 radcnv0 25575 psercnlem1 25584 pserdvlem2 25587 logtayl 25815 cxpsqrt 25858 rlimcnp2 26116 amgm 26140 pntpbnd1 26734 pntlem3 26757 atssma 30740 fsuppcurry1 31060 fsuppcurry2 31061 supxrnemnf 31091 xrge0iifcnv 31883 eulerpartlemf 32337 cusgracyclt3v 33118 nolesgn2o 33874 nogesgn1o 33876 arg-ax 34605 pw2f1ocnv 40859 infordmin 41139 clsk1independent 41656 pm10.57 41989 con5 42142 con3ALT2 42150 xrred 42904 afvco2 44668 islininds2 45825 |
Copyright terms: Public domain | W3C validator |