| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1641 ax12ev2 2181 necon3bd 2940 necon1bd 2944 spc2d 3571 sspss 4068 neldif 4100 ssonprc 7766 limsssuc 7829 limom 7861 onfununi 8313 pw2f1olem 9050 domtriord 9093 pssnn 9138 ordtypelem10 9487 rankxpsuc 9842 carden2a 9926 fidomtri2 9954 alephdom 10041 isf32lem12 10324 isfin1-3 10346 isfin7-2 10356 entric 10517 inttsk 10734 zeo 12627 zeo2 12628 xrlttri 13106 xaddf 13191 elfzonelfzo 13737 fzonfzoufzol 13738 elfznelfzo 13740 om2uzf1oi 13925 hashnfinnn0 14333 ruclem3 16208 sumodd 16365 bitsinv1lem 16418 sadcaddlem 16434 phiprmpw 16753 iserodd 16813 fldivp1 16875 prmpwdvds 16882 vdwlem6 16964 sylow2alem2 19555 efgs1b 19673 fctop 22898 cctop 22900 ppttop 22901 iccpnfcnv 24849 iccpnfhmeo 24850 iscau2 25184 ovolicc2lem2 25426 mbfeqalem1 25549 limccnp2 25800 radcnv0 26332 psercnlem1 26342 pserdvlem2 26345 logtayl 26576 cxpsqrt 26619 rlimcnp2 26883 amgm 26908 pntpbnd1 27504 pntlem3 27527 nolesgn2o 27590 nogesgn1o 27592 atssma 32314 fsuppcurry1 32655 fsuppcurry2 32656 supxrnemnf 32698 xrge0iifcnv 33930 eulerpartlemf 34368 onvf1odlem4 35100 cusgracyclt3v 35150 arg-ax 36411 pw2f1ocnv 43033 onsupnmax 43224 infordmin 43528 clsk1independent 44042 pm10.57 44367 con5 44519 con3ALT2 44527 xrred 45368 afvco2 47181 islininds2 48477 |
| Copyright terms: Public domain | W3C validator |