| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1641 ax12ev2 2181 necon3bd 2939 necon1bd 2943 spc2d 3559 sspss 4055 neldif 4087 ssonprc 7727 limsssuc 7790 limom 7822 onfununi 8271 pw2f1olem 9005 domtriord 9047 pssnn 9092 ordtypelem10 9438 rankxpsuc 9797 carden2a 9881 fidomtri2 9909 alephdom 9994 isf32lem12 10277 isfin1-3 10299 isfin7-2 10309 entric 10470 inttsk 10687 zeo 12580 zeo2 12581 xrlttri 13059 xaddf 13144 elfzonelfzo 13690 fzonfzoufzol 13691 elfznelfzo 13693 om2uzf1oi 13878 hashnfinnn0 14286 ruclem3 16160 sumodd 16317 bitsinv1lem 16370 sadcaddlem 16386 phiprmpw 16705 iserodd 16765 fldivp1 16827 prmpwdvds 16834 vdwlem6 16916 sylow2alem2 19515 efgs1b 19633 fctop 22907 cctop 22909 ppttop 22910 iccpnfcnv 24858 iccpnfhmeo 24859 iscau2 25193 ovolicc2lem2 25435 mbfeqalem1 25558 limccnp2 25809 radcnv0 26341 psercnlem1 26351 pserdvlem2 26354 logtayl 26585 cxpsqrt 26628 rlimcnp2 26892 amgm 26917 pntpbnd1 27513 pntlem3 27536 nolesgn2o 27599 nogesgn1o 27601 atssma 32340 fsuppcurry1 32681 fsuppcurry2 32682 supxrnemnf 32724 xrge0iifcnv 33899 eulerpartlemf 34337 onvf1odlem4 35078 cusgracyclt3v 35128 arg-ax 36389 pw2f1ocnv 43010 onsupnmax 43201 infordmin 43505 clsk1independent 44019 pm10.57 44344 con5 44496 con3ALT2 44504 xrred 45345 afvco2 47161 islininds2 48470 |
| Copyright terms: Public domain | W3C validator |