Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 969 dedlem0b 1041 meredith 1645 necon3bd 2956 necon1bd 2960 spc2d 3531 sspss 4030 neldif 4060 ssonprc 7614 limsssuc 7672 limom 7703 onfununi 8143 pw2f1olem 8816 domtriord 8859 pssnn 8913 pssnnOLD 8969 ordtypelem10 9216 rankxpsuc 9571 carden2a 9655 fidomtri2 9683 alephdom 9768 isf32lem12 10051 isfin1-3 10073 isfin7-2 10083 entric 10244 inttsk 10461 zeo 12336 zeo2 12337 xrlttri 12802 xaddf 12887 elfzonelfzo 13417 fzonfzoufzol 13418 elfznelfzo 13420 om2uzf1oi 13601 hashnfinnn0 14004 ruclem3 15870 sumodd 16025 bitsinv1lem 16076 sadcaddlem 16092 phiprmpw 16405 iserodd 16464 fldivp1 16526 prmpwdvds 16533 vdwlem6 16615 sylow2alem2 19138 efgs1b 19257 fctop 22062 cctop 22064 ppttop 22065 iccpnfcnv 24013 iccpnfhmeo 24014 iscau2 24346 ovolicc2lem2 24587 mbfeqalem1 24710 limccnp2 24961 radcnv0 25480 psercnlem1 25489 pserdvlem2 25492 logtayl 25720 cxpsqrt 25763 rlimcnp2 26021 amgm 26045 pntpbnd1 26639 pntlem3 26662 atssma 30641 fsuppcurry1 30962 fsuppcurry2 30963 supxrnemnf 30993 xrge0iifcnv 31785 eulerpartlemf 32237 cusgracyclt3v 33018 nolesgn2o 33801 nogesgn1o 33803 arg-ax 34532 pw2f1ocnv 40775 infordmin 41037 clsk1independent 41545 pm10.57 41878 con5 42031 con3ALT2 42039 xrred 42794 afvco2 44555 islininds2 45713 |
Copyright terms: Public domain | W3C validator |