![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1638 ax12ev2 2178 necon3bd 2952 necon1bd 2956 spc2d 3602 sspss 4112 neldif 4144 ssonprc 7807 limsssuc 7871 limom 7903 onfununi 8380 pw2f1olem 9115 domtriord 9162 pssnn 9207 ordtypelem10 9565 rankxpsuc 9920 carden2a 10004 fidomtri2 10032 alephdom 10119 isf32lem12 10402 isfin1-3 10424 isfin7-2 10434 entric 10595 inttsk 10812 zeo 12702 zeo2 12703 xrlttri 13178 xaddf 13263 elfzonelfzo 13805 fzonfzoufzol 13806 elfznelfzo 13808 om2uzf1oi 13991 hashnfinnn0 14397 ruclem3 16266 sumodd 16422 bitsinv1lem 16475 sadcaddlem 16491 phiprmpw 16810 iserodd 16869 fldivp1 16931 prmpwdvds 16938 vdwlem6 17020 sylow2alem2 19651 efgs1b 19769 fctop 23027 cctop 23029 ppttop 23030 iccpnfcnv 24989 iccpnfhmeo 24990 iscau2 25325 ovolicc2lem2 25567 mbfeqalem1 25690 limccnp2 25942 radcnv0 26474 psercnlem1 26484 pserdvlem2 26487 logtayl 26717 cxpsqrt 26760 rlimcnp2 27024 amgm 27049 pntpbnd1 27645 pntlem3 27668 nolesgn2o 27731 nogesgn1o 27733 atssma 32407 fsuppcurry1 32743 fsuppcurry2 32744 supxrnemnf 32779 xrge0iifcnv 33894 eulerpartlemf 34352 cusgracyclt3v 35141 arg-ax 36399 pw2f1ocnv 43026 onsupnmax 43217 infordmin 43522 clsk1independent 44036 pm10.57 44367 con5 44520 con3ALT2 44528 xrred 45315 afvco2 47126 islininds2 48330 |
Copyright terms: Public domain | W3C validator |