| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1642 ax12ev2 2185 necon3bd 2943 necon1bd 2947 spc2d 3553 sspss 4051 neldif 4083 ssonprc 7726 limsssuc 7786 limom 7818 onfununi 8267 pw2f1olem 9001 domtriord 9043 pssnn 9085 ordtypelem10 9420 rankxpsuc 9782 carden2a 9866 fidomtri2 9894 alephdom 9979 isf32lem12 10262 isfin1-3 10284 isfin7-2 10294 entric 10455 inttsk 10672 zeo 12565 zeo2 12566 xrlttri 13040 xaddf 13125 elfzonelfzo 13671 fzonfzoufzol 13673 elfznelfzo 13675 om2uzf1oi 13862 hashnfinnn0 14270 ruclem3 16144 sumodd 16301 bitsinv1lem 16354 sadcaddlem 16370 phiprmpw 16689 iserodd 16749 fldivp1 16811 prmpwdvds 16818 vdwlem6 16900 sylow2alem2 19532 efgs1b 19650 fctop 22920 cctop 22922 ppttop 22923 iccpnfcnv 24870 iccpnfhmeo 24871 iscau2 25205 ovolicc2lem2 25447 mbfeqalem1 25570 limccnp2 25821 radcnv0 26353 psercnlem1 26363 pserdvlem2 26366 logtayl 26597 cxpsqrt 26640 rlimcnp2 26904 amgm 26929 pntpbnd1 27525 pntlem3 27548 nolesgn2o 27611 nogesgn1o 27613 atssma 32360 fsuppcurry1 32711 fsuppcurry2 32712 supxrnemnf 32755 xrge0iifcnv 33967 eulerpartlemf 34404 onvf1odlem4 35171 cusgracyclt3v 35221 arg-ax 36481 pw2f1ocnv 43154 onsupnmax 43345 infordmin 43649 clsk1independent 44163 pm10.57 44488 con5 44639 con3ALT2 44647 xrred 45487 afvco2 47300 islininds2 48609 |
| Copyright terms: Public domain | W3C validator |