Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 969 dedlem0b 1041 meredith 1645 necon3bd 2955 necon1bd 2959 spc2d 3536 sspss 4035 neldif 4065 ssonprc 7619 limsssuc 7677 limom 7708 onfununi 8148 pw2f1olem 8821 domtriord 8864 pssnn 8905 pssnnOLD 8986 ordtypelem10 9232 rankxpsuc 9587 carden2a 9671 fidomtri2 9699 alephdom 9784 isf32lem12 10067 isfin1-3 10089 isfin7-2 10099 entric 10260 inttsk 10477 zeo 12352 zeo2 12353 xrlttri 12818 xaddf 12903 elfzonelfzo 13433 fzonfzoufzol 13434 elfznelfzo 13436 om2uzf1oi 13617 hashnfinnn0 14020 ruclem3 15886 sumodd 16041 bitsinv1lem 16092 sadcaddlem 16108 phiprmpw 16421 iserodd 16480 fldivp1 16542 prmpwdvds 16549 vdwlem6 16631 sylow2alem2 19167 efgs1b 19286 fctop 22098 cctop 22100 ppttop 22101 iccpnfcnv 24051 iccpnfhmeo 24052 iscau2 24384 ovolicc2lem2 24625 mbfeqalem1 24748 limccnp2 24999 radcnv0 25518 psercnlem1 25527 pserdvlem2 25530 logtayl 25758 cxpsqrt 25801 rlimcnp2 26059 amgm 26083 pntpbnd1 26677 pntlem3 26700 atssma 30681 fsuppcurry1 31002 fsuppcurry2 31003 supxrnemnf 31033 xrge0iifcnv 31825 eulerpartlemf 32279 cusgracyclt3v 33060 nolesgn2o 33843 nogesgn1o 33845 arg-ax 34574 pw2f1ocnv 40817 infordmin 41079 clsk1independent 41587 pm10.57 41920 con5 42073 con3ALT2 42081 xrred 42836 afvco2 44597 islininds2 45755 |
Copyright terms: Public domain | W3C validator |