| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1640 ax12ev2 2179 necon3bd 2953 necon1bd 2957 spc2d 3601 sspss 4101 neldif 4133 ssonprc 7808 limsssuc 7872 limom 7904 onfununi 8382 pw2f1olem 9117 domtriord 9164 pssnn 9209 ordtypelem10 9568 rankxpsuc 9923 carden2a 10007 fidomtri2 10035 alephdom 10122 isf32lem12 10405 isfin1-3 10427 isfin7-2 10437 entric 10598 inttsk 10815 zeo 12706 zeo2 12707 xrlttri 13182 xaddf 13267 elfzonelfzo 13809 fzonfzoufzol 13810 elfznelfzo 13812 om2uzf1oi 13995 hashnfinnn0 14401 ruclem3 16270 sumodd 16426 bitsinv1lem 16479 sadcaddlem 16495 phiprmpw 16814 iserodd 16874 fldivp1 16936 prmpwdvds 16943 vdwlem6 17025 sylow2alem2 19637 efgs1b 19755 fctop 23012 cctop 23014 ppttop 23015 iccpnfcnv 24976 iccpnfhmeo 24977 iscau2 25312 ovolicc2lem2 25554 mbfeqalem1 25677 limccnp2 25928 radcnv0 26460 psercnlem1 26470 pserdvlem2 26473 logtayl 26703 cxpsqrt 26746 rlimcnp2 27010 amgm 27035 pntpbnd1 27631 pntlem3 27654 nolesgn2o 27717 nogesgn1o 27719 atssma 32398 fsuppcurry1 32737 fsuppcurry2 32738 supxrnemnf 32773 xrge0iifcnv 33933 eulerpartlemf 34373 cusgracyclt3v 35162 arg-ax 36418 pw2f1ocnv 43054 onsupnmax 43245 infordmin 43550 clsk1independent 44064 pm10.57 44395 con5 44547 con3ALT2 44555 xrred 45381 afvco2 47193 islininds2 48406 |
| Copyright terms: Public domain | W3C validator |