![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 973 dedlem0b 1045 meredith 1639 ax12ev2 2181 necon3bd 2960 necon1bd 2964 spc2d 3615 sspss 4125 neldif 4157 ssonprc 7823 limsssuc 7887 limom 7919 onfununi 8397 pw2f1olem 9142 domtriord 9189 pssnn 9234 ordtypelem10 9596 rankxpsuc 9951 carden2a 10035 fidomtri2 10063 alephdom 10150 isf32lem12 10433 isfin1-3 10455 isfin7-2 10465 entric 10626 inttsk 10843 zeo 12729 zeo2 12730 xrlttri 13201 xaddf 13286 elfzonelfzo 13819 fzonfzoufzol 13820 elfznelfzo 13822 om2uzf1oi 14004 hashnfinnn0 14410 ruclem3 16281 sumodd 16436 bitsinv1lem 16487 sadcaddlem 16503 phiprmpw 16823 iserodd 16882 fldivp1 16944 prmpwdvds 16951 vdwlem6 17033 sylow2alem2 19660 efgs1b 19778 fctop 23032 cctop 23034 ppttop 23035 iccpnfcnv 24994 iccpnfhmeo 24995 iscau2 25330 ovolicc2lem2 25572 mbfeqalem1 25695 limccnp2 25947 radcnv0 26477 psercnlem1 26487 pserdvlem2 26490 logtayl 26720 cxpsqrt 26763 rlimcnp2 27027 amgm 27052 pntpbnd1 27648 pntlem3 27671 nolesgn2o 27734 nogesgn1o 27736 atssma 32410 fsuppcurry1 32739 fsuppcurry2 32740 supxrnemnf 32775 xrge0iifcnv 33879 eulerpartlemf 34335 cusgracyclt3v 35124 arg-ax 36382 pw2f1ocnv 42994 onsupnmax 43189 infordmin 43494 clsk1independent 44008 pm10.57 44340 con5 44493 con3ALT2 44501 xrred 45280 afvco2 47091 islininds2 48213 |
Copyright terms: Public domain | W3C validator |