| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | notnot 142 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con4d 115 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con1 146 mt3d 148 pm2.24d 151 con3d 152 pm2.61d 179 pm2.8 974 dedlem0b 1044 meredith 1641 ax12ev2 2181 necon3bd 2947 necon1bd 2951 spc2d 3586 sspss 4082 neldif 4114 ssonprc 7786 limsssuc 7850 limom 7882 onfununi 8360 pw2f1olem 9095 domtriord 9142 pssnn 9187 ordtypelem10 9546 rankxpsuc 9901 carden2a 9985 fidomtri2 10013 alephdom 10100 isf32lem12 10383 isfin1-3 10405 isfin7-2 10415 entric 10576 inttsk 10793 zeo 12684 zeo2 12685 xrlttri 13160 xaddf 13245 elfzonelfzo 13790 fzonfzoufzol 13791 elfznelfzo 13793 om2uzf1oi 13976 hashnfinnn0 14384 ruclem3 16256 sumodd 16412 bitsinv1lem 16465 sadcaddlem 16481 phiprmpw 16800 iserodd 16860 fldivp1 16922 prmpwdvds 16929 vdwlem6 17011 sylow2alem2 19604 efgs1b 19722 fctop 22947 cctop 22949 ppttop 22950 iccpnfcnv 24898 iccpnfhmeo 24899 iscau2 25234 ovolicc2lem2 25476 mbfeqalem1 25599 limccnp2 25850 radcnv0 26382 psercnlem1 26392 pserdvlem2 26395 logtayl 26626 cxpsqrt 26669 rlimcnp2 26933 amgm 26958 pntpbnd1 27554 pntlem3 27577 nolesgn2o 27640 nogesgn1o 27642 atssma 32364 fsuppcurry1 32707 fsuppcurry2 32708 supxrnemnf 32750 xrge0iifcnv 33969 eulerpartlemf 34407 cusgracyclt3v 35183 arg-ax 36439 pw2f1ocnv 43036 onsupnmax 43227 infordmin 43531 clsk1independent 44045 pm10.57 44370 con5 44522 con3ALT2 44530 xrred 45372 afvco2 47185 islininds2 48440 |
| Copyright terms: Public domain | W3C validator |