|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > consym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with ∧. See negsym1 36419 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| consym1 | ⊢ ((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | falim 1556 | . . 3 ⊢ (⊥ → ((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓 ∧ 𝜑))) | |
| 2 | 1 | ad2antll 729 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ ⊥)) → ((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓 ∧ 𝜑))) | 
| 3 | 2 | pm2.43i 52 | 1 ⊢ ((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |