Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bisym1 | Structured version Visualization version GIF version |
Description: A symmetry with ↔.
See negsym1 34533 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
Ref | Expression |
---|---|
bisym1 | ⊢ ((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbfal 1554 | . . 3 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ ⊥)) | |
2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜓) ↔ (𝜓 ↔ (𝜓 ↔ ⊥))) |
3 | pm5.19 387 | . . 3 ⊢ ¬ (𝜓 ↔ ¬ 𝜓) | |
4 | 3 | pm2.21i 119 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜓) → (𝜓 ↔ 𝜑)) |
5 | 2, 4 | sylbir 234 | 1 ⊢ ((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |