|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bisym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with ↔. See negsym1 36418 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| bisym1 | ⊢ ((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓 ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nbfal 1555 | . . 3 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ ⊥)) | |
| 2 | 1 | bibi2i 337 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜓) ↔ (𝜓 ↔ (𝜓 ↔ ⊥))) | 
| 3 | pm5.19 386 | . . 3 ⊢ ¬ (𝜓 ↔ ¬ 𝜓) | |
| 4 | 3 | pm2.21i 119 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜓) → (𝜓 ↔ 𝜑)) | 
| 5 | 2, 4 | sylbir 235 | 1 ⊢ ((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓 ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |