|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dissym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with ∨. See negsym1 36419 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| dissym1 | ⊢ ((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓 ∨ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
| 2 | falim 1556 | . . 3 ⊢ (⊥ → 𝜑) | |
| 3 | 2 | orim2i 910 | . 2 ⊢ ((𝜓 ∨ ⊥) → (𝜓 ∨ 𝜑)) | 
| 4 | 1, 3 | jaoi 857 | 1 ⊢ ((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓 ∨ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |