Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dissym1 | Structured version Visualization version GIF version |
Description: A symmetry with ∨.
See negsym1 34533 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
Ref | Expression |
---|---|
dissym1 | ⊢ ((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | falim 1556 | . . 3 ⊢ (⊥ → 𝜑) | |
3 | 2 | orim2i 907 | . 2 ⊢ ((𝜓 ∨ ⊥) → (𝜓 ∨ 𝜑)) |
4 | 1, 3 | jaoi 853 | 1 ⊢ ((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |