|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dedlem0a | Structured version Visualization version GIF version | ||
| Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| dedlem0a | ⊢ (𝜑 → (𝜓 ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | biimt 360 | . . 3 ⊢ ((𝜒 → 𝜑) → ((𝜓 ∧ 𝜑) ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) | |
| 3 | 2 | jarri 107 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜑) ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) | 
| 4 | 1, 3 | bitrd 279 | 1 ⊢ (𝜑 → (𝜓 ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: iftrue 4531 | 
| Copyright terms: Public domain | W3C validator |