|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dedlem0b | Structured version Visualization version GIF version | ||
| Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| dedlem0b | ⊢ (¬ 𝜑 → (𝜓 ↔ ((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → (𝜒 ∧ 𝜑))) | |
| 2 | 1 | imim2d 57 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 → 𝜑) → (𝜓 → (𝜒 ∧ 𝜑)))) | 
| 3 | 2 | com23 86 | . 2 ⊢ (¬ 𝜑 → (𝜓 → ((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)))) | 
| 4 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜓 → (𝜓 → 𝜑)) | |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜒 ∧ 𝜑) → 𝜑) | |
| 6 | 4, 5 | imim12i 62 | . . . 4 ⊢ (((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)) → (¬ 𝜓 → 𝜑)) | 
| 7 | 6 | con1d 145 | . . 3 ⊢ (((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)) → (¬ 𝜑 → 𝜓)) | 
| 8 | 7 | com12 32 | . 2 ⊢ (¬ 𝜑 → (((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)) → 𝜓)) | 
| 9 | 3, 8 | impbid 212 | 1 ⊢ (¬ 𝜑 → (𝜓 ↔ ((𝜓 → 𝜑) → (𝜒 ∧ 𝜑)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |