Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cases | Structured version Visualization version GIF version |
Description: Case disjunction according to the value of 𝜑. (Contributed by NM, 25-Apr-2019.) |
Ref | Expression |
---|---|
cases.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
cases.2 | ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
cases | ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 891 | . . 3 ⊢ (𝜑 ∨ ¬ 𝜑) | |
2 | 1 | biantrur 530 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∨ ¬ 𝜑) ∧ 𝜓)) |
3 | andir 1005 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | |
4 | cases.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 4 | pm5.32i 574 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
6 | cases.2 | . . . 4 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) | |
7 | 6 | pm5.32i 574 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∧ 𝜃)) |
8 | 5, 7 | orbi12i 911 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
9 | 2, 3, 8 | 3bitri 296 | 1 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: casesifp 1075 elimif 4493 elim2if 30788 wl-ifpimpr 35564 |
Copyright terms: Public domain | W3C validator |