| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
| Ref | Expression |
|---|---|
| iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 470 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
| 2 | simpl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | impbid1 224 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 206 df-an 395 |
| This theorem is referenced by: ibar 527 biantru 528 biantrud 530 ancrb 546 pm5.54 1015 dedlem0a 1041 r19.29r 3109 unineq 4289 fvopab6 7048 fressnfv 7179 tpostpos 8269 odi 8617 nnmword 8671 ltmpi 10954 maducoeval2 22656 mdbr2 32252 mdsl2i 32278 poimirlem26 37394 poimirlem27 37395 itg2addnclem 37419 itg2addnclem3 37421 prjspeclsp 42336 rmydioph 42743 expdioph 42752 dmafv2rnb 46912 |
| Copyright terms: Public domain | W3C validator |