![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
Ref | Expression |
---|---|
iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 472 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | impbid1 226 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: ibar 529 biantru 530 biantrud 532 ancrb 548 pm5.54 1012 dedlem0a 1036 unineq 4180 fvopab6 6673 fressnfv 6792 tpostpos 7770 odi 8062 nnmword 8116 ltmpi 10179 maducoeval2 20937 mdbr2 29760 mdsl2i 29786 poimirlem26 34470 poimirlem27 34471 itg2addnclem 34495 itg2addnclem3 34497 prjspeclsp 38780 rmydioph 39117 expdioph 39126 dmafv2rnb 42966 |
Copyright terms: Public domain | W3C validator |