| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
| Ref | Expression |
|---|---|
| iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1019 dedlem0a 1043 r19.29r 3096 unineq 4251 fvopab6 7002 fressnfv 7132 tpostpos 8225 odi 8543 nnmword 8597 ltmpi 10857 maducoeval2 22527 mdbr2 32225 mdsl2i 32251 poimirlem26 37640 poimirlem27 37641 itg2addnclem 37665 itg2addnclem3 37667 prjspeclsp 42600 rmydioph 43003 expdioph 43012 dmafv2rnb 47227 |
| Copyright terms: Public domain | W3C validator |