![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
Ref | Expression |
---|---|
iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | impbid1 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1018 dedlem0a 1044 r19.29r 3122 unineq 4307 fvopab6 7063 fressnfv 7194 tpostpos 8287 odi 8635 nnmword 8689 ltmpi 10973 maducoeval2 22667 mdbr2 32328 mdsl2i 32354 poimirlem26 37606 poimirlem27 37607 itg2addnclem 37631 itg2addnclem3 37633 prjspeclsp 42567 rmydioph 42971 expdioph 42980 dmafv2rnb 47144 |
Copyright terms: Public domain | W3C validator |