Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
Ref | Expression |
---|---|
iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | impbid1 224 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1014 dedlem0a 1040 unineq 4208 fvopab6 6890 fressnfv 7014 tpostpos 8033 odi 8372 nnmword 8426 ltmpi 10591 maducoeval2 21697 mdbr2 30559 mdsl2i 30585 poimirlem26 35730 poimirlem27 35731 itg2addnclem 35755 itg2addnclem3 35757 prjspeclsp 40372 rmydioph 40752 expdioph 40761 dmafv2rnb 44608 |
Copyright terms: Public domain | W3C validator |