| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
| Ref | Expression |
|---|---|
| iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1019 dedlem0a 1043 r19.29r 3104 unineq 4268 fvopab6 7025 fressnfv 7155 tpostpos 8250 odi 8596 nnmword 8650 ltmpi 10923 maducoeval2 22583 mdbr2 32282 mdsl2i 32308 poimirlem26 37675 poimirlem27 37676 itg2addnclem 37700 itg2addnclem3 37702 prjspeclsp 42602 rmydioph 43005 expdioph 43014 dmafv2rnb 47225 |
| Copyright terms: Public domain | W3C validator |