| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
| Ref | Expression |
|---|---|
| iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1019 dedlem0a 1043 r19.29r 3093 unineq 4239 fvopab6 6964 fressnfv 7094 tpostpos 8179 odi 8497 nnmword 8551 ltmpi 10798 maducoeval2 22525 mdbr2 32244 mdsl2i 32270 poimirlem26 37646 poimirlem27 37647 itg2addnclem 37671 itg2addnclem3 37673 prjspeclsp 42605 rmydioph 43007 expdioph 43016 dmafv2rnb 47233 |
| Copyright terms: Public domain | W3C validator |