| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
| Ref | Expression |
|---|---|
| iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 471 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 biantru 529 biantrud 531 ancrb 547 pm5.54 1019 dedlem0a 1043 r19.29r 3096 unineq 4247 fvopab6 6984 fressnfv 7114 tpostpos 8202 odi 8520 nnmword 8574 ltmpi 10833 maducoeval2 22560 mdbr2 32275 mdsl2i 32301 poimirlem26 37633 poimirlem27 37634 itg2addnclem 37658 itg2addnclem3 37660 prjspeclsp 42593 rmydioph 42996 expdioph 43005 dmafv2rnb 47223 |
| Copyright terms: Public domain | W3C validator |