MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iba Structured version   Visualization version   GIF version

Theorem iba 529
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.)
Assertion
Ref Expression
iba (𝜑 → (𝜓 ↔ (𝜓𝜑)))

Proof of Theorem iba
StepHypRef Expression
1 pm3.21 473 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
2 simpl 484 . 2 ((𝜓𝜑) → 𝜓)
31, 2impbid1 224 1 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ibar  530  biantru  531  biantrud  533  ancrb  549  pm5.54  1017  dedlem0a  1043  r19.29r  3117  unineq  4278  fvopab6  7032  fressnfv  7158  tpostpos  8231  odi  8579  nnmword  8633  ltmpi  10899  maducoeval2  22142  mdbr2  31549  mdsl2i  31575  poimirlem26  36514  poimirlem27  36515  itg2addnclem  36539  itg2addnclem3  36541  prjspeclsp  41354  rmydioph  41753  expdioph  41762  dmafv2rnb  45937
  Copyright terms: Public domain W3C validator