MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iba Structured version   Visualization version   GIF version

Theorem iba 527
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.)
Assertion
Ref Expression
iba (𝜑 → (𝜓 ↔ (𝜓𝜑)))

Proof of Theorem iba
StepHypRef Expression
1 pm3.21 471 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
2 simpl 482 . 2 ((𝜓𝜑) → 𝜓)
31, 2impbid1 225 1 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ibar  528  biantru  529  biantrud  531  ancrb  547  pm5.54  1019  dedlem0a  1043  r19.29r  3115  unineq  4287  fvopab6  7049  fressnfv  7179  tpostpos  8272  odi  8618  nnmword  8672  ltmpi  10945  maducoeval2  22647  mdbr2  32316  mdsl2i  32342  poimirlem26  37654  poimirlem27  37655  itg2addnclem  37679  itg2addnclem3  37681  prjspeclsp  42627  rmydioph  43031  expdioph  43040  dmafv2rnb  47246
  Copyright terms: Public domain W3C validator