MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iba Structured version   Visualization version   GIF version

Theorem iba 526
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.)
Assertion
Ref Expression
iba (𝜑 → (𝜓 ↔ (𝜓𝜑)))

Proof of Theorem iba
StepHypRef Expression
1 pm3.21 470 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
2 simpl 481 . 2 ((𝜓𝜑) → 𝜓)
31, 2impbid1 224 1 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  ibar  527  biantru  528  biantrud  530  ancrb  546  pm5.54  1015  dedlem0a  1041  r19.29r  3109  unineq  4289  fvopab6  7048  fressnfv  7179  tpostpos  8269  odi  8617  nnmword  8671  ltmpi  10954  maducoeval2  22656  mdbr2  32252  mdsl2i  32278  poimirlem26  37394  poimirlem27  37395  itg2addnclem  37419  itg2addnclem3  37421  prjspeclsp  42336  rmydioph  42743  expdioph  42752  dmafv2rnb  46912
  Copyright terms: Public domain W3C validator