Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iba | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
Ref | Expression |
---|---|
iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 472 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | impbid1 224 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ibar 529 biantru 530 biantrud 532 ancrb 548 pm5.54 1015 dedlem0a 1041 unineq 4211 fvopab6 6908 fressnfv 7032 tpostpos 8062 odi 8410 nnmword 8464 ltmpi 10660 maducoeval2 21789 mdbr2 30658 mdsl2i 30684 poimirlem26 35803 poimirlem27 35804 itg2addnclem 35828 itg2addnclem3 35830 prjspeclsp 40451 rmydioph 40836 expdioph 40845 dmafv2rnb 44721 |
Copyright terms: Public domain | W3C validator |