MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iba Structured version   Visualization version   GIF version

Theorem iba 527
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.)
Assertion
Ref Expression
iba (𝜑 → (𝜓 ↔ (𝜓𝜑)))

Proof of Theorem iba
StepHypRef Expression
1 pm3.21 471 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
2 simpl 482 . 2 ((𝜓𝜑) → 𝜓)
31, 2impbid1 225 1 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ibar  528  biantru  529  biantrud  531  ancrb  547  pm5.54  1019  dedlem0a  1043  r19.29r  3096  unineq  4251  fvopab6  7002  fressnfv  7132  tpostpos  8225  odi  8543  nnmword  8597  ltmpi  10857  maducoeval2  22527  mdbr2  32225  mdsl2i  32251  poimirlem26  37640  poimirlem27  37641  itg2addnclem  37665  itg2addnclem3  37667  prjspeclsp  42600  rmydioph  43003  expdioph  43012  dmafv2rnb  47227
  Copyright terms: Public domain W3C validator