Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-1 | Structured version Visualization version GIF version |
Description: Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-1 | ⊢ 1 = 〈1R, 0R〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1 10873 | . 2 class 1 | |
2 | c1r 10624 | . . 3 class 1R | |
3 | c0r 10623 | . . 3 class 0R | |
4 | 2, 3 | cop 4573 | . 2 class 〈1R, 0R〉 |
5 | 1, 4 | wceq 1542 | 1 wff 1 = 〈1R, 0R〉 |
Colors of variables: wff setvar class |
This definition is referenced by: ax1cn 10906 axi2m1 10916 ax1ne0 10917 ax1rid 10918 axrrecex 10920 |
Copyright terms: Public domain | W3C validator |