Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax1ne0 | Structured version Visualization version GIF version |
Description: 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11010. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1ne0 | ⊢ 1 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ne0sr 10922 | . . . 4 ⊢ ¬ 1R = 0R | |
2 | 1sr 10907 | . . . . . 6 ⊢ 1R ∈ R | |
3 | 2 | elexi 3460 | . . . . 5 ⊢ 1R ∈ V |
4 | 3 | eqresr 10963 | . . . 4 ⊢ (〈1R, 0R〉 = 〈0R, 0R〉 ↔ 1R = 0R) |
5 | 1, 4 | mtbir 322 | . . 3 ⊢ ¬ 〈1R, 0R〉 = 〈0R, 0R〉 |
6 | df-1 10949 | . . . 4 ⊢ 1 = 〈1R, 0R〉 | |
7 | df-0 10948 | . . . 4 ⊢ 0 = 〈0R, 0R〉 | |
8 | 6, 7 | eqeq12i 2755 | . . 3 ⊢ (1 = 0 ↔ 〈1R, 0R〉 = 〈0R, 0R〉) |
9 | 5, 8 | mtbir 322 | . 2 ⊢ ¬ 1 = 0 |
10 | 9 | neir 2944 | 1 ⊢ 1 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ≠ wne 2941 〈cop 4575 Rcnr 10691 0Rc0r 10692 1Rc1r 10693 0cc0 10941 1c1 10942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-oadd 8346 df-omul 8347 df-er 8544 df-ec 8546 df-qs 8550 df-ni 10698 df-pli 10699 df-mi 10700 df-lti 10701 df-plpq 10734 df-mpq 10735 df-ltpq 10736 df-enq 10737 df-nq 10738 df-erq 10739 df-plq 10740 df-mq 10741 df-1nq 10742 df-rq 10743 df-ltnq 10744 df-np 10807 df-1p 10808 df-plp 10809 df-ltp 10811 df-enr 10881 df-nr 10882 df-ltr 10885 df-0r 10886 df-1r 10887 df-0 10948 df-1 10949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |