| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax1ne0 | Structured version Visualization version GIF version | ||
| Description: 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11082. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax1ne0 | ⊢ 1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ne0sr 10994 | . . . 4 ⊢ ¬ 1R = 0R | |
| 2 | 1sr 10979 | . . . . . 6 ⊢ 1R ∈ R | |
| 3 | 2 | elexi 3460 | . . . . 5 ⊢ 1R ∈ V |
| 4 | 3 | eqresr 11035 | . . . 4 ⊢ (〈1R, 0R〉 = 〈0R, 0R〉 ↔ 1R = 0R) |
| 5 | 1, 4 | mtbir 323 | . . 3 ⊢ ¬ 〈1R, 0R〉 = 〈0R, 0R〉 |
| 6 | df-1 11021 | . . . 4 ⊢ 1 = 〈1R, 0R〉 | |
| 7 | df-0 11020 | . . . 4 ⊢ 0 = 〈0R, 0R〉 | |
| 8 | 6, 7 | eqeq12i 2751 | . . 3 ⊢ (1 = 0 ↔ 〈1R, 0R〉 = 〈0R, 0R〉) |
| 9 | 5, 8 | mtbir 323 | . 2 ⊢ ¬ 1 = 0 |
| 10 | 9 | neir 2932 | 1 ⊢ 1 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2929 〈cop 4581 Rcnr 10763 0Rc0r 10764 1Rc1r 10765 0cc0 11013 1c1 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-1p 10880 df-plp 10881 df-ltp 10883 df-enr 10953 df-nr 10954 df-ltr 10957 df-0r 10958 df-1r 10959 df-0 11020 df-1 11021 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |