MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1cn Structured version   Visualization version   GIF version

Theorem ax1cn 10984
Description: 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11008. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
ax1cn 1 ∈ ℂ

Proof of Theorem ax1cn
StepHypRef Expression
1 axresscn 10983 . 2 ℝ ⊆ ℂ
2 df-1 10958 . . 3 1 = ⟨1R, 0R
3 1sr 10916 . . . 4 1RR
4 opelreal 10965 . . . 4 (⟨1R, 0R⟩ ∈ ℝ ↔ 1RR)
53, 4mpbir 230 . . 3 ⟨1R, 0R⟩ ∈ ℝ
62, 5eqeltri 2833 . 2 1 ∈ ℝ
71, 6sselii 3927 1 1 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  cop 4576  Rcnr 10700  0Rc0r 10701  1Rc1r 10702  cc 10948  cr 10949  1c1 10951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-omul 8350  df-er 8547  df-ec 8549  df-qs 8553  df-ni 10707  df-pli 10708  df-mi 10709  df-lti 10710  df-plpq 10743  df-mpq 10744  df-ltpq 10745  df-enq 10746  df-nq 10747  df-erq 10748  df-plq 10749  df-mq 10750  df-1nq 10751  df-rq 10752  df-ltnq 10753  df-np 10816  df-1p 10817  df-plp 10818  df-enr 10890  df-nr 10891  df-0r 10895  df-1r 10896  df-c 10956  df-1 10958  df-r 10960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator