![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax1cn | Structured version Visualization version GIF version |
Description: 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11196. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1cn | ⊢ 1 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axresscn 11171 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | df-1 11146 | . . 3 ⊢ 1 = ⟨1R, 0R⟩ | |
3 | 1sr 11104 | . . . 4 ⊢ 1R ∈ R | |
4 | opelreal 11153 | . . . 4 ⊢ (⟨1R, 0R⟩ ∈ ℝ ↔ 1R ∈ R) | |
5 | 3, 4 | mpbir 230 | . . 3 ⊢ ⟨1R, 0R⟩ ∈ ℝ |
6 | 2, 5 | eqeltri 2825 | . 2 ⊢ 1 ∈ ℝ |
7 | 1, 6 | sselii 3977 | 1 ⊢ 1 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ⟨cop 4635 Rcnr 10888 0Rc0r 10889 1Rc1r 10890 ℂcc 11136 ℝcr 11137 1c1 11139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-omul 8491 df-er 8724 df-ec 8726 df-qs 8730 df-ni 10895 df-pli 10896 df-mi 10897 df-lti 10898 df-plpq 10931 df-mpq 10932 df-ltpq 10933 df-enq 10934 df-nq 10935 df-erq 10936 df-plq 10937 df-mq 10938 df-1nq 10939 df-rq 10940 df-ltnq 10941 df-np 11004 df-1p 11005 df-plp 11006 df-enr 11078 df-nr 11079 df-0r 11083 df-1r 11084 df-c 11144 df-1 11146 df-r 11148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |