MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Structured version   Visualization version   GIF version

Theorem axrrecex 11232
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 11256. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrrecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11200 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 3077 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 275 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 neeq1 3009 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝐴 ≠ 0))
5 oveq1 7455 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2742 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76rexbidv 3185 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
84, 7imbi12d 344 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)))
9 df-0 11191 . . . . . . 7 0 = ⟨0R, 0R
109eqeq2i 2753 . . . . . 6 (⟨𝑦, 0R⟩ = 0 ↔ ⟨𝑦, 0R⟩ = ⟨0R, 0R⟩)
11 vex 3492 . . . . . . 7 𝑦 ∈ V
1211eqresr 11206 . . . . . 6 (⟨𝑦, 0R⟩ = ⟨0R, 0R⟩ ↔ 𝑦 = 0R)
1310, 12bitri 275 . . . . 5 (⟨𝑦, 0R⟩ = 0 ↔ 𝑦 = 0R)
1413necon3bii 2999 . . . 4 (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝑦 ≠ 0R)
15 recexsr 11176 . . . . . 6 ((𝑦R𝑦 ≠ 0R) → ∃𝑧R (𝑦 ·R 𝑧) = 1R)
1615ex 412 . . . . 5 (𝑦R → (𝑦 ≠ 0R → ∃𝑧R (𝑦 ·R 𝑧) = 1R))
17 opelreal 11199 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1817anbi1i 623 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
19 mulresr 11208 . . . . . . . . . . . 12 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2019eqeq1d 2742 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
21 df-1 11192 . . . . . . . . . . . . 13 1 = ⟨1R, 0R
2221eqeq2i 2753 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
23 ovex 7481 . . . . . . . . . . . . 13 (𝑦 ·R 𝑧) ∈ V
2423eqresr 11206 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
2522, 24bitri 275 . . . . . . . . . . 11 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
2620, 25bitrdi 287 . . . . . . . . . 10 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
2726pm5.32da 578 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
2818, 27bitrid 283 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
29 oveq2 7456 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3029eqeq1d 2742 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3130rspcev 3635 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)
3228, 31biimtrrdi 254 . . . . . . 7 (𝑦R → ((𝑧R ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3332expd 415 . . . . . 6 (𝑦R → (𝑧R → ((𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
3433rexlimdv 3159 . . . . 5 (𝑦R → (∃𝑧R (𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3516, 34syld 47 . . . 4 (𝑦R → (𝑦 ≠ 0R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3614, 35biimtrid 242 . . 3 (𝑦R → (⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
373, 8, 36gencl 3533 . 2 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3837imp 406 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cop 4654  (class class class)co 7448  Rcnr 10934  0Rc0r 10935  1Rc1r 10936   ·R cmr 10939  cr 11183  0cc0 11184  1c1 11185   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-plr 11126  df-mr 11127  df-ltr 11128  df-0r 11129  df-1r 11130  df-m1r 11131  df-c 11190  df-0 11191  df-1 11192  df-r 11194  df-mul 11196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator