MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Structured version   Visualization version   GIF version

Theorem axrrecex 10577
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 10601. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrrecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10545 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 3142 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 277 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 neeq1 3076 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝐴 ≠ 0))
5 oveq1 7155 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2821 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76rexbidv 3295 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
84, 7imbi12d 347 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)))
9 df-0 10536 . . . . . . 7 0 = ⟨0R, 0R
109eqeq2i 2832 . . . . . 6 (⟨𝑦, 0R⟩ = 0 ↔ ⟨𝑦, 0R⟩ = ⟨0R, 0R⟩)
11 vex 3496 . . . . . . 7 𝑦 ∈ V
1211eqresr 10551 . . . . . 6 (⟨𝑦, 0R⟩ = ⟨0R, 0R⟩ ↔ 𝑦 = 0R)
1310, 12bitri 277 . . . . 5 (⟨𝑦, 0R⟩ = 0 ↔ 𝑦 = 0R)
1413necon3bii 3066 . . . 4 (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝑦 ≠ 0R)
15 recexsr 10521 . . . . . 6 ((𝑦R𝑦 ≠ 0R) → ∃𝑧R (𝑦 ·R 𝑧) = 1R)
1615ex 415 . . . . 5 (𝑦R → (𝑦 ≠ 0R → ∃𝑧R (𝑦 ·R 𝑧) = 1R))
17 opelreal 10544 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1817anbi1i 625 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
19 mulresr 10553 . . . . . . . . . . . 12 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2019eqeq1d 2821 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
21 df-1 10537 . . . . . . . . . . . . 13 1 = ⟨1R, 0R
2221eqeq2i 2832 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
23 ovex 7181 . . . . . . . . . . . . 13 (𝑦 ·R 𝑧) ∈ V
2423eqresr 10551 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
2522, 24bitri 277 . . . . . . . . . . 11 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
2620, 25syl6bb 289 . . . . . . . . . 10 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
2726pm5.32da 581 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
2818, 27syl5bb 285 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
29 oveq2 7156 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3029eqeq1d 2821 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3130rspcev 3621 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)
3228, 31syl6bir 256 . . . . . . 7 (𝑦R → ((𝑧R ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3332expd 418 . . . . . 6 (𝑦R → (𝑧R → ((𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
3433rexlimdv 3281 . . . . 5 (𝑦R → (∃𝑧R (𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3516, 34syld 47 . . . 4 (𝑦R → (𝑦 ≠ 0R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3614, 35syl5bi 244 . . 3 (𝑦R → (⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
373, 8, 36gencl 3533 . 2 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3837imp 409 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wex 1774  wcel 2108  wne 3014  wrex 3137  cop 4565  (class class class)co 7148  Rcnr 10279  0Rc0r 10280  1Rc1r 10281   ·R cmr 10284  cr 10528  0cc0 10529  1c1 10530   · cmul 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-omul 8099  df-er 8281  df-ec 8283  df-qs 8287  df-ni 10286  df-pli 10287  df-mi 10288  df-lti 10289  df-plpq 10322  df-mpq 10323  df-ltpq 10324  df-enq 10325  df-nq 10326  df-erq 10327  df-plq 10328  df-mq 10329  df-1nq 10330  df-rq 10331  df-ltnq 10332  df-np 10395  df-1p 10396  df-plp 10397  df-mp 10398  df-ltp 10399  df-enr 10469  df-nr 10470  df-plr 10471  df-mr 10472  df-ltr 10473  df-0r 10474  df-1r 10475  df-m1r 10476  df-c 10535  df-0 10536  df-1 10537  df-r 10539  df-mul 10541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator