|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-0 | Structured version Visualization version GIF version | ||
| Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| df-0 | ⊢ 0 = 〈0R, 0R〉 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cc0 11156 | . 2 class 0 | |
| 2 | c0r 10907 | . . 3 class 0R | |
| 3 | 2, 2 | cop 4631 | . 2 class 〈0R, 0R〉 | 
| 4 | 1, 3 | wceq 1539 | 1 wff 0 = 〈0R, 0R〉 | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: axi2m1 11200 ax1ne0 11201 axrnegex 11203 axrrecex 11204 axpre-mulgt0 11209 | 
| Copyright terms: Public domain | W3C validator |