Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-0 | Structured version Visualization version GIF version |
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-0 | ⊢ 0 = 〈0R, 0R〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc0 10855 | . 2 class 0 | |
2 | c0r 10606 | . . 3 class 0R | |
3 | 2, 2 | cop 4572 | . 2 class 〈0R, 0R〉 |
4 | 1, 3 | wceq 1541 | 1 wff 0 = 〈0R, 0R〉 |
Colors of variables: wff setvar class |
This definition is referenced by: axi2m1 10899 ax1ne0 10900 axrnegex 10902 axrrecex 10903 axpre-mulgt0 10908 |
Copyright terms: Public domain | W3C validator |