Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-0 | Structured version Visualization version GIF version |
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-0 | ⊢ 0 = ⟨0R, 0R⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc0 10972 | . 2 class 0 | |
2 | c0r 10723 | . . 3 class 0R | |
3 | 2, 2 | cop 4579 | . 2 class ⟨0R, 0R⟩ |
4 | 1, 3 | wceq 1540 | 1 wff 0 = ⟨0R, 0R⟩ |
Colors of variables: wff setvar class |
This definition is referenced by: axi2m1 11016 ax1ne0 11017 axrnegex 11019 axrrecex 11020 axpre-mulgt0 11025 |
Copyright terms: Public domain | W3C validator |