| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0 | Structured version Visualization version GIF version | ||
| Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-0 | ⊢ 0 = 〈0R, 0R〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc0 11134 | . 2 class 0 | |
| 2 | c0r 10885 | . . 3 class 0R | |
| 3 | 2, 2 | cop 4612 | . 2 class 〈0R, 0R〉 |
| 4 | 1, 3 | wceq 1540 | 1 wff 0 = 〈0R, 0R〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: axi2m1 11178 ax1ne0 11179 axrnegex 11181 axrrecex 11182 axpre-mulgt0 11187 |
| Copyright terms: Public domain | W3C validator |