MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Visualization version   GIF version

Theorem axi2m1 11102
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11126. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 11023 . . . . . 6 0RR
2 1sr 11024 . . . . . 6 1RR
3 mulcnsr 11079 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 692 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 11042 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 11041 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 7373 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 11025 . . . . . . . . . 10 -1RR
11 1idsr 11041 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2765 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 7374 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsr 11030 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
16 0idsr 11040 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1710, 16ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1814, 15, 173eqtri 2769 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
19 00sr 11042 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
202, 19ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
21 1idsr 11041 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
221, 21ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2320, 22oveq12i 7374 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
24 0idsr 11040 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
251, 24ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2623, 25eqtri 2765 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2718, 26opeq12i 4840 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
284, 27eqtri 2765 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
2928oveq1i 7372 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
30 addresr 11081 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3110, 2, 30mp2an 691 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
32 m1p1sr 11035 . . . 4 (-1R +R 1R) = 0R
3332opeq1i 4838 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3429, 31, 333eqtri 2769 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
35 df-i 11067 . . . 4 i = ⟨0R, 1R
3635, 35oveq12i 7374 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
37 df-1 11066 . . 3 1 = ⟨1R, 0R
3836, 37oveq12i 7374 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
39 df-0 11065 . 2 0 = ⟨0R, 0R
4034, 38, 393eqtr4i 2775 1 ((i · i) + 1) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  cop 4597  (class class class)co 7362  Rcnr 10808  0Rc0r 10809  1Rc1r 10810  -1Rcm1r 10811   +R cplr 10812   ·R cmr 10813  0cc0 11058  1c1 11059  ici 11060   + caddc 11061   · cmul 11063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-omul 8422  df-er 8655  df-ec 8657  df-qs 8661  df-ni 10815  df-pli 10816  df-mi 10817  df-lti 10818  df-plpq 10851  df-mpq 10852  df-ltpq 10853  df-enq 10854  df-nq 10855  df-erq 10856  df-plq 10857  df-mq 10858  df-1nq 10859  df-rq 10860  df-ltnq 10861  df-np 10924  df-1p 10925  df-plp 10926  df-mp 10927  df-ltp 10928  df-enr 10998  df-nr 10999  df-plr 11000  df-mr 11001  df-0r 11003  df-1r 11004  df-m1r 11005  df-c 11064  df-0 11065  df-1 11066  df-i 11067  df-add 11069  df-mul 11070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator