MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Visualization version   GIF version

Theorem axi2m1 11153
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11177. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 11074 . . . . . 6 0RR
2 1sr 11075 . . . . . 6 1RR
3 mulcnsr 11130 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 690 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 11093 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 11092 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 7415 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 11076 . . . . . . . . . 10 -1RR
11 1idsr 11092 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2754 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 7416 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsr 11081 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
16 0idsr 11091 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1710, 16ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1814, 15, 173eqtri 2758 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
19 00sr 11093 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
202, 19ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
21 1idsr 11092 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
221, 21ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2320, 22oveq12i 7416 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
24 0idsr 11091 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
251, 24ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2623, 25eqtri 2754 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2718, 26opeq12i 4873 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
284, 27eqtri 2754 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
2928oveq1i 7414 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
30 addresr 11132 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3110, 2, 30mp2an 689 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
32 m1p1sr 11086 . . . 4 (-1R +R 1R) = 0R
3332opeq1i 4871 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3429, 31, 333eqtri 2758 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
35 df-i 11118 . . . 4 i = ⟨0R, 1R
3635, 35oveq12i 7416 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
37 df-1 11117 . . 3 1 = ⟨1R, 0R
3836, 37oveq12i 7416 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
39 df-0 11116 . 2 0 = ⟨0R, 0R
4034, 38, 393eqtr4i 2764 1 ((i · i) + 1) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cop 4629  (class class class)co 7404  Rcnr 10859  0Rc0r 10860  1Rc1r 10861  -1Rcm1r 10862   +R cplr 10863   ·R cmr 10864  0cc0 11109  1c1 11110  ici 11111   + caddc 11112   · cmul 11114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-oadd 8468  df-omul 8469  df-er 8702  df-ec 8704  df-qs 8708  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912  df-np 10975  df-1p 10976  df-plp 10977  df-mp 10978  df-ltp 10979  df-enr 11049  df-nr 11050  df-plr 11051  df-mr 11052  df-0r 11054  df-1r 11055  df-m1r 11056  df-c 11115  df-0 11116  df-1 11117  df-i 11118  df-add 11120  df-mul 11121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator