Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axi2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 10870. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 10767 | . . . . . 6 ⊢ 0R ∈ R | |
2 | 1sr 10768 | . . . . . 6 ⊢ 1R ∈ R | |
3 | mulcnsr 10823 | . . . . . 6 ⊢ (((0R ∈ R ∧ 1R ∈ R) ∧ (0R ∈ R ∧ 1R ∈ R)) → (〈0R, 1R〉 · 〈0R, 1R〉) = 〈((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))〉) | |
4 | 1, 2, 1, 2, 3 | mp4an 689 | . . . . 5 ⊢ (〈0R, 1R〉 · 〈0R, 1R〉) = 〈((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))〉 |
5 | 00sr 10786 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 0R) = 0R |
7 | 1idsr 10785 | . . . . . . . . . . 11 ⊢ (1R ∈ R → (1R ·R 1R) = 1R) | |
8 | 2, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (1R ·R 1R) = 1R |
9 | 8 | oveq2i 7266 | . . . . . . . . 9 ⊢ (-1R ·R (1R ·R 1R)) = (-1R ·R 1R) |
10 | m1r 10769 | . . . . . . . . . 10 ⊢ -1R ∈ R | |
11 | 1idsr 10785 | . . . . . . . . . 10 ⊢ (-1R ∈ R → (-1R ·R 1R) = -1R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ (-1R ·R 1R) = -1R |
13 | 9, 12 | eqtri 2766 | . . . . . . . 8 ⊢ (-1R ·R (1R ·R 1R)) = -1R |
14 | 6, 13 | oveq12i 7267 | . . . . . . 7 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R) |
15 | addcomsr 10774 | . . . . . . 7 ⊢ (0R +R -1R) = (-1R +R 0R) | |
16 | 0idsr 10784 | . . . . . . . 8 ⊢ (-1R ∈ R → (-1R +R 0R) = -1R) | |
17 | 10, 16 | ax-mp 5 | . . . . . . 7 ⊢ (-1R +R 0R) = -1R |
18 | 14, 15, 17 | 3eqtri 2770 | . . . . . 6 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R |
19 | 00sr 10786 | . . . . . . . . 9 ⊢ (1R ∈ R → (1R ·R 0R) = 0R) | |
20 | 2, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (1R ·R 0R) = 0R |
21 | 1idsr 10785 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 1R) = 0R) | |
22 | 1, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 1R) = 0R |
23 | 20, 22 | oveq12i 7267 | . . . . . . 7 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R) |
24 | 0idsr 10784 | . . . . . . . 8 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
25 | 1, 24 | ax-mp 5 | . . . . . . 7 ⊢ (0R +R 0R) = 0R |
26 | 23, 25 | eqtri 2766 | . . . . . 6 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = 0R |
27 | 18, 26 | opeq12i 4806 | . . . . 5 ⊢ 〈((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))〉 = 〈-1R, 0R〉 |
28 | 4, 27 | eqtri 2766 | . . . 4 ⊢ (〈0R, 1R〉 · 〈0R, 1R〉) = 〈-1R, 0R〉 |
29 | 28 | oveq1i 7265 | . . 3 ⊢ ((〈0R, 1R〉 · 〈0R, 1R〉) + 〈1R, 0R〉) = (〈-1R, 0R〉 + 〈1R, 0R〉) |
30 | addresr 10825 | . . . 4 ⊢ ((-1R ∈ R ∧ 1R ∈ R) → (〈-1R, 0R〉 + 〈1R, 0R〉) = 〈(-1R +R 1R), 0R〉) | |
31 | 10, 2, 30 | mp2an 688 | . . 3 ⊢ (〈-1R, 0R〉 + 〈1R, 0R〉) = 〈(-1R +R 1R), 0R〉 |
32 | m1p1sr 10779 | . . . 4 ⊢ (-1R +R 1R) = 0R | |
33 | 32 | opeq1i 4804 | . . 3 ⊢ 〈(-1R +R 1R), 0R〉 = 〈0R, 0R〉 |
34 | 29, 31, 33 | 3eqtri 2770 | . 2 ⊢ ((〈0R, 1R〉 · 〈0R, 1R〉) + 〈1R, 0R〉) = 〈0R, 0R〉 |
35 | df-i 10811 | . . . 4 ⊢ i = 〈0R, 1R〉 | |
36 | 35, 35 | oveq12i 7267 | . . 3 ⊢ (i · i) = (〈0R, 1R〉 · 〈0R, 1R〉) |
37 | df-1 10810 | . . 3 ⊢ 1 = 〈1R, 0R〉 | |
38 | 36, 37 | oveq12i 7267 | . 2 ⊢ ((i · i) + 1) = ((〈0R, 1R〉 · 〈0R, 1R〉) + 〈1R, 0R〉) |
39 | df-0 10809 | . 2 ⊢ 0 = 〈0R, 0R〉 | |
40 | 34, 38, 39 | 3eqtr4i 2776 | 1 ⊢ ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 〈cop 4564 (class class class)co 7255 Rcnr 10552 0Rc0r 10553 1Rc1r 10554 -1Rcm1r 10555 +R cplr 10556 ·R cmr 10557 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-1p 10669 df-plp 10670 df-mp 10671 df-ltp 10672 df-enr 10742 df-nr 10743 df-plr 10744 df-mr 10745 df-0r 10747 df-1r 10748 df-m1r 10749 df-c 10808 df-0 10809 df-1 10810 df-i 10811 df-add 10813 df-mul 10814 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |