Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Visualization version   GIF version

Theorem axi2m1 10619
 Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 10643. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 10540 . . . . . 6 0RR
2 1sr 10541 . . . . . 6 1RR
3 mulcnsr 10596 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 692 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 10559 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 10558 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 7161 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 10542 . . . . . . . . . 10 -1RR
11 1idsr 10558 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2781 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 7162 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsr 10547 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
16 0idsr 10557 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1710, 16ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1814, 15, 173eqtri 2785 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
19 00sr 10559 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
202, 19ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
21 1idsr 10558 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
221, 21ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2320, 22oveq12i 7162 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
24 0idsr 10557 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
251, 24ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2623, 25eqtri 2781 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2718, 26opeq12i 4768 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
284, 27eqtri 2781 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
2928oveq1i 7160 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
30 addresr 10598 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3110, 2, 30mp2an 691 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
32 m1p1sr 10552 . . . 4 (-1R +R 1R) = 0R
3332opeq1i 4766 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3429, 31, 333eqtri 2785 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
35 df-i 10584 . . . 4 i = ⟨0R, 1R
3635, 35oveq12i 7162 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
37 df-1 10583 . . 3 1 = ⟨1R, 0R
3836, 37oveq12i 7162 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
39 df-0 10582 . 2 0 = ⟨0R, 0R
4034, 38, 393eqtr4i 2791 1 ((i · i) + 1) = 0
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  ⟨cop 4528  (class class class)co 7150  Rcnr 10325  0Rc0r 10326  1Rc1r 10327  -1Rcm1r 10328   +R cplr 10329   ·R cmr 10330  0cc0 10575  1c1 10576  ici 10577   + caddc 10578   · cmul 10580 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-omul 8117  df-er 8299  df-ec 8301  df-qs 8305  df-ni 10332  df-pli 10333  df-mi 10334  df-lti 10335  df-plpq 10368  df-mpq 10369  df-ltpq 10370  df-enq 10371  df-nq 10372  df-erq 10373  df-plq 10374  df-mq 10375  df-1nq 10376  df-rq 10377  df-ltnq 10378  df-np 10441  df-1p 10442  df-plp 10443  df-mp 10444  df-ltp 10445  df-enr 10515  df-nr 10516  df-plr 10517  df-mr 10518  df-0r 10520  df-1r 10521  df-m1r 10522  df-c 10581  df-0 10582  df-1 10583  df-i 10584  df-add 10586  df-mul 10587 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator