![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axi2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11207. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 11104 | . . . . . 6 ⊢ 0R ∈ R | |
2 | 1sr 11105 | . . . . . 6 ⊢ 1R ∈ R | |
3 | mulcnsr 11160 | . . . . . 6 ⊢ (((0R ∈ R ∧ 1R ∈ R) ∧ (0R ∈ R ∧ 1R ∈ R)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩) | |
4 | 1, 2, 1, 2, 3 | mp4an 692 | . . . . 5 ⊢ (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ |
5 | 00sr 11123 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 0R) = 0R |
7 | 1idsr 11122 | . . . . . . . . . . 11 ⊢ (1R ∈ R → (1R ·R 1R) = 1R) | |
8 | 2, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (1R ·R 1R) = 1R |
9 | 8 | oveq2i 7431 | . . . . . . . . 9 ⊢ (-1R ·R (1R ·R 1R)) = (-1R ·R 1R) |
10 | m1r 11106 | . . . . . . . . . 10 ⊢ -1R ∈ R | |
11 | 1idsr 11122 | . . . . . . . . . 10 ⊢ (-1R ∈ R → (-1R ·R 1R) = -1R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ (-1R ·R 1R) = -1R |
13 | 9, 12 | eqtri 2756 | . . . . . . . 8 ⊢ (-1R ·R (1R ·R 1R)) = -1R |
14 | 6, 13 | oveq12i 7432 | . . . . . . 7 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R) |
15 | addcomsr 11111 | . . . . . . 7 ⊢ (0R +R -1R) = (-1R +R 0R) | |
16 | 0idsr 11121 | . . . . . . . 8 ⊢ (-1R ∈ R → (-1R +R 0R) = -1R) | |
17 | 10, 16 | ax-mp 5 | . . . . . . 7 ⊢ (-1R +R 0R) = -1R |
18 | 14, 15, 17 | 3eqtri 2760 | . . . . . 6 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R |
19 | 00sr 11123 | . . . . . . . . 9 ⊢ (1R ∈ R → (1R ·R 0R) = 0R) | |
20 | 2, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (1R ·R 0R) = 0R |
21 | 1idsr 11122 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 1R) = 0R) | |
22 | 1, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 1R) = 0R |
23 | 20, 22 | oveq12i 7432 | . . . . . . 7 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R) |
24 | 0idsr 11121 | . . . . . . . 8 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
25 | 1, 24 | ax-mp 5 | . . . . . . 7 ⊢ (0R +R 0R) = 0R |
26 | 23, 25 | eqtri 2756 | . . . . . 6 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = 0R |
27 | 18, 26 | opeq12i 4879 | . . . . 5 ⊢ ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R⟩ |
28 | 4, 27 | eqtri 2756 | . . . 4 ⊢ (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R⟩ |
29 | 28 | oveq1i 7430 | . . 3 ⊢ ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) |
30 | addresr 11162 | . . . 4 ⊢ ((-1R ∈ R ∧ 1R ∈ R) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩) | |
31 | 10, 2, 30 | mp2an 691 | . . 3 ⊢ (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩ |
32 | m1p1sr 11116 | . . . 4 ⊢ (-1R +R 1R) = 0R | |
33 | 32 | opeq1i 4877 | . . 3 ⊢ ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R⟩ |
34 | 29, 31, 33 | 3eqtri 2760 | . 2 ⊢ ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R⟩ |
35 | df-i 11148 | . . . 4 ⊢ i = ⟨0R, 1R⟩ | |
36 | 35, 35 | oveq12i 7432 | . . 3 ⊢ (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩) |
37 | df-1 11147 | . . 3 ⊢ 1 = ⟨1R, 0R⟩ | |
38 | 36, 37 | oveq12i 7432 | . 2 ⊢ ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) |
39 | df-0 11146 | . 2 ⊢ 0 = ⟨0R, 0R⟩ | |
40 | 34, 38, 39 | 3eqtr4i 2766 | 1 ⊢ ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ⟨cop 4635 (class class class)co 7420 Rcnr 10889 0Rc0r 10890 1Rc1r 10891 -1Rcm1r 10892 +R cplr 10893 ·R cmr 10894 0cc0 11139 1c1 11140 ici 11141 + caddc 11142 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-omul 8492 df-er 8725 df-ec 8727 df-qs 8731 df-ni 10896 df-pli 10897 df-mi 10898 df-lti 10899 df-plpq 10932 df-mpq 10933 df-ltpq 10934 df-enq 10935 df-nq 10936 df-erq 10937 df-plq 10938 df-mq 10939 df-1nq 10940 df-rq 10941 df-ltnq 10942 df-np 11005 df-1p 11006 df-plp 11007 df-mp 11008 df-ltp 11009 df-enr 11079 df-nr 11080 df-plr 11081 df-mr 11082 df-0r 11084 df-1r 11085 df-m1r 11086 df-c 11145 df-0 11146 df-1 11147 df-i 11148 df-add 11150 df-mul 11151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |