![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axi2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11178. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 11075 | . . . . . 6 ⊢ 0R ∈ R | |
2 | 1sr 11076 | . . . . . 6 ⊢ 1R ∈ R | |
3 | mulcnsr 11131 | . . . . . 6 ⊢ (((0R ∈ R ∧ 1R ∈ R) ∧ (0R ∈ R ∧ 1R ∈ R)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩) | |
4 | 1, 2, 1, 2, 3 | mp4an 692 | . . . . 5 ⊢ (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ |
5 | 00sr 11094 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 0R) = 0R |
7 | 1idsr 11093 | . . . . . . . . . . 11 ⊢ (1R ∈ R → (1R ·R 1R) = 1R) | |
8 | 2, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (1R ·R 1R) = 1R |
9 | 8 | oveq2i 7420 | . . . . . . . . 9 ⊢ (-1R ·R (1R ·R 1R)) = (-1R ·R 1R) |
10 | m1r 11077 | . . . . . . . . . 10 ⊢ -1R ∈ R | |
11 | 1idsr 11093 | . . . . . . . . . 10 ⊢ (-1R ∈ R → (-1R ·R 1R) = -1R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ (-1R ·R 1R) = -1R |
13 | 9, 12 | eqtri 2761 | . . . . . . . 8 ⊢ (-1R ·R (1R ·R 1R)) = -1R |
14 | 6, 13 | oveq12i 7421 | . . . . . . 7 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R) |
15 | addcomsr 11082 | . . . . . . 7 ⊢ (0R +R -1R) = (-1R +R 0R) | |
16 | 0idsr 11092 | . . . . . . . 8 ⊢ (-1R ∈ R → (-1R +R 0R) = -1R) | |
17 | 10, 16 | ax-mp 5 | . . . . . . 7 ⊢ (-1R +R 0R) = -1R |
18 | 14, 15, 17 | 3eqtri 2765 | . . . . . 6 ⊢ ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R |
19 | 00sr 11094 | . . . . . . . . 9 ⊢ (1R ∈ R → (1R ·R 0R) = 0R) | |
20 | 2, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (1R ·R 0R) = 0R |
21 | 1idsr 11093 | . . . . . . . . 9 ⊢ (0R ∈ R → (0R ·R 1R) = 0R) | |
22 | 1, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (0R ·R 1R) = 0R |
23 | 20, 22 | oveq12i 7421 | . . . . . . 7 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R) |
24 | 0idsr 11092 | . . . . . . . 8 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
25 | 1, 24 | ax-mp 5 | . . . . . . 7 ⊢ (0R +R 0R) = 0R |
26 | 23, 25 | eqtri 2761 | . . . . . 6 ⊢ ((1R ·R 0R) +R (0R ·R 1R)) = 0R |
27 | 18, 26 | opeq12i 4879 | . . . . 5 ⊢ ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R⟩ |
28 | 4, 27 | eqtri 2761 | . . . 4 ⊢ (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R⟩ |
29 | 28 | oveq1i 7419 | . . 3 ⊢ ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) |
30 | addresr 11133 | . . . 4 ⊢ ((-1R ∈ R ∧ 1R ∈ R) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩) | |
31 | 10, 2, 30 | mp2an 691 | . . 3 ⊢ (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩ |
32 | m1p1sr 11087 | . . . 4 ⊢ (-1R +R 1R) = 0R | |
33 | 32 | opeq1i 4877 | . . 3 ⊢ ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R⟩ |
34 | 29, 31, 33 | 3eqtri 2765 | . 2 ⊢ ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R⟩ |
35 | df-i 11119 | . . . 4 ⊢ i = ⟨0R, 1R⟩ | |
36 | 35, 35 | oveq12i 7421 | . . 3 ⊢ (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩) |
37 | df-1 11118 | . . 3 ⊢ 1 = ⟨1R, 0R⟩ | |
38 | 36, 37 | oveq12i 7421 | . 2 ⊢ ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) |
39 | df-0 11117 | . 2 ⊢ 0 = ⟨0R, 0R⟩ | |
40 | 34, 38, 39 | 3eqtr4i 2771 | 1 ⊢ ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ⟨cop 4635 (class class class)co 7409 Rcnr 10860 0Rc0r 10861 1Rc1r 10862 -1Rcm1r 10863 +R cplr 10864 ·R cmr 10865 0cc0 11110 1c1 11111 ici 11112 + caddc 11113 · cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-1p 10977 df-plp 10978 df-mp 10979 df-ltp 10980 df-enr 11050 df-nr 11051 df-plr 11052 df-mr 11053 df-0r 11055 df-1r 11056 df-m1r 11057 df-c 11116 df-0 11117 df-1 11118 df-i 11119 df-add 11121 df-mul 11122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |